Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2017, Article ID 1478294, 3 pages
https://doi.org/10.1155/2017/1478294
Editorial

Insulin Resistance, Type 1 and Type 2 Diabetes, and Related Complications 2017

1Department of Physiology, University of Saskatchewan College of Medicine, 107 Wiggins Road, Saskatoon, SK, Canada S7N 5E5
2Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
3The Medical Affairs Company, Cardiovascular, Troy, MI 48085, USA

Correspondence should be addressed to Joseph Fomusi Ndisang; ac.ksasu@gnasidn.hpesoj

Received 13 August 2017; Accepted 13 August 2017; Published 15 November 2017

Copyright © 2017 Joseph Fomusi Ndisang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Mishra and J. F. Ndisang, “A critical and comprehensive insight on heme oxygenase and related products including carbon monoxide, bilirubin, biliverdin and ferritin in type-1 and type-2 diabetes,” Current Pharmaceutical Design, vol. 20, no. 9, pp. 1370–1391, 2014. View at Publisher · View at Google Scholar
  2. J. F. Ndisang and A. Jadhav, “Hemin therapy improves kidney function in male streptozotocin-induced diabetic rats: role of the heme oxygenase/atrial natriuretic peptide/adiponectin axis,” Endocrinology, vol. 155, no. 1, pp. 215–229, 2014. View at Publisher · View at Google Scholar
  3. M. C. Petersen, D. F. Vatner, and G. I. Shulman, “Regulation of hepatic glucose metabolism in health and disease,” Nature Reviews Endocrinology, vol. 13, no. 10, pp. 572–587, 2017. View at Publisher · View at Google Scholar
  4. J. F. Ndisang, A. Jadhav, and M. Mishra, “The heme oxygenase system suppresses perirenal visceral adiposity, abates renal inflammation and ameliorates diabetic nephropathy in Zucker diabetic fatty rats,” PLoS One, vol. 9, no. 1, article e87936, 2014. View at Publisher · View at Google Scholar
  5. P. Hossain, B. Kawar, and M. El Nahas, “Obesity and diabetes in the developing world—a growing challenge,” The New England Journal of Medicine, vol. 356, no. 3, pp. 213–215, 2007. View at Publisher · View at Google Scholar
  6. M. Vladu, D. Clenciu, I. C. Efrem et al., “Insulin resistance and chronic kidney disease in patients with type 1 diabetes mellitus,” Journal of Nutrition and Metabolism, vol. 2017, Article ID 6425359, 5 pages, 2017. View at Publisher · View at Google Scholar
  7. J. F. Ndisang and A. Jadhav, “Heme arginate therapy enhanced adiponectin and atrial natriuretic peptide, but abated endothelin-1 with attenuation of kidney histopathological lesions in mineralocorticoid-induced hypertension,” The Journal of Pharmacology and Experimental Therapeutics, vol. 334, no. 1, pp. 87–98, 2010. View at Publisher · View at Google Scholar
  8. L. Duvnjak and M. Duvnjak, “The metabolic syndrome: an ongoing story,” Journal of Physiology and Pharmacology, vol. 60, Supplement 7, pp. 19–24, 2009. View at Google Scholar
  9. J. F. Ndisang and M. Mishra, “The heme oxygenase system selectively suppresses the proinflammatory macrophage m1 phenotype and potentiates insulin signaling in spontaneously hypertensive rats,” American Journal of Hypertension, vol. 26, no. 9, pp. 1123–1131, 2013. View at Publisher · View at Google Scholar
  10. B. K. Pedersen, “Anti-inflammatory effects of exercise: role in diabetes and cardiovascular disease,” European Journal of Clinical Investigation, vol. 47, no. 8, pp. 600–611, 2017. View at Publisher · View at Google Scholar
  11. P. Bostrom, J. Wu, M. P. Jedrychowski et al., “A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis,” Nature, vol. 481, no. 7382, pp. 463–468, 2012. View at Publisher · View at Google Scholar
  12. G. K. Dimitriadis, M. S. Randeva, and A. D. Miras, “Potential hormone mechanisms of bariatric surgery,” Current Obesity Reports, vol. 6, no. 3, pp. 253–265, 2017. View at Publisher · View at Google Scholar
  13. Z. Zhang, S. Zhou, X. Jiang et al., “The role of the Nrf2/Keap1 pathway in obesity and metabolic syndrome,” Reviews in Endocrine & Metabolic Disorders, vol. 16, no. 1, pp. 35–45, 2015. View at Publisher · View at Google Scholar