Table of Contents Author Guidelines Submit a Manuscript
Journal of Electrical and Computer Engineering
Volume 2012, Article ID 593532, 12 pages
http://dx.doi.org/10.1155/2012/593532
Research Article

Selectively Fortifying Reconfigurable Computing Device to Achieve Higher Error Resilience

1Department of Electrical Engineering and Comouter Science, University of Central Florida, Orlando, 32816 FL, USA
2Department of Electrical Engineering and Comouter Science, University of California at Berkeley, Berkeley, 94720 CA, USA

Received 11 September 2011; Revised 9 January 2012; Accepted 11 January 2012

Academic Editor: Deming Chen

Copyright © 2012 Mingjie Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Bose, “Designing reliable systems with unreliable components,” IEEE Micro, vol. 26, no. 5, pp. 5–6, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Borkar, “Designing reliable systems from unreliable components: the challenges of transistor variability and degradation,” IEEE Micro, vol. 25, no. 6, pp. 10–16, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. W. Robinett, G. S. Snider, P. J. Kuekes, and R. S. Williams, “Computing with a trillion crummy components,” Communications of the ACM, vol. 50, no. 9, pp. 35–39, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. S. L. Jeng, J. C. Lu, and K. Wang, “A review of reliability research on nanotechnology,” IEEE Transactions on Reliability, vol. 56, no. 3, pp. 401–410, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. S. R. Nassif, N. Mehta, and Y. Cao, “A resilience roadmap,” in Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE 10), pp. 1011–1016, March 2010. View at Scopus
  6. N Haddad, R. Brown, T. Cronauer, and H. Phan, “Radiation hardened cots-based 32-bit microprocessor,” in Proceedings of the 5th European Conference on Radiation and Its Effects on Components and Systems (RADECS '99), pp. 593–597, Fontevraud , France, 1999.
  7. W. Heidergott, “SEU tolerant device, circuit and processor design,” in Proceedings of the 42nd Design Automation Conference (DAC '05), pp. 5–10, ACM, New York, NY, USA, June 2005. View at Scopus
  8. “QPro Virtex-II Pro 1.5V Platform FPGAs,” http://www.xilinx.com/support/documentation/defense qpro.htm/.
  9. M. A. Gomaa, C. Scarbrough, T. N. Vijaykumar, and I. Pomeranz, “Transient-Fault Recovery for Chip Multiprocessors,” IEEE Micro, vol. 23, no. 6, pp. 76–83, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Gaisler, “A portable and fault-tolerant microprocessor based on the SPARC V8 architecture,” in Proceedings of the International Conference on Dependable Systems and Networks (DNS '02), pp. 409–415, June 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Quinn, P. Graham, J. Krone, M. Caffrey, and S. Rezgui, “Radiation-induced multi-bit upsets in SRAM-based FPGAs,” IEEE Transactions on Nuclear Science, vol. 52, no. 6, pp. 2455–2461, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Rollins, M. Wirthlin, M. Caffrey, and P. Graham, “Evaluating TMR techniques in the presence of single event upsets,” in Proceedings of the 6th Annual International Conference on Military and Aerospace Programmable Logic Devices, pp. 63–70, September 2003.
  13. G. M. Swift, S. Rezgui, J. George et al., “Dynamic testing of xilinx virtex-II field programmable gate array (FPGA) input/output blocks (IOBs),” IEEE Transactions on Nuclear Science, vol. 51, no. 6, pp. 3469–3474, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Pratt, M. Caffrey, J. F. Carroll, P. Graham, K. Morgan, and M. Wirthlin, “Fine-grain SEU mitigation for FPGAs using partial TMR,” IEEE Transactions on Nuclear Science, vol. 55, no. 4, Article ID 4636895, pp. 2274–2280, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. P. K. Samudrala, J. Ramos, and S. Katkoori, “Selective triple modular redundancy (STMR) based single-event upset (SEU) tolerant synthesis for FPGAs,” IEEE Transactions on Nuclear Science, vol. 51, no. 5, pp. 2957–2969, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Morgan, M. Caffrey, P. Graham, E. Johnson, B. Pratt, and M. Wirthlin, “SEU-induced persistent error propagation in FPGAs,” IEEE Transactions on Nuclear Science, vol. 52, no. 6, pp. 2438–2445, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Narayanan, G. V. Varatkar, D. L. Jones, and N. R. Shanbhag, “Computation as estimation: estimation-theoretic IC design improves robustness and reduces power consumption,” in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '08), pp. 1421–1424, April 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. M. A. Breuer, “Multi-media applications and imprecise computation,” in Proceedings of the 8th Euromicro Conference on Digital System Design (DSD '05), pp. 2–7, September 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Hegde and N. R. Shanbhag, “Energy-efficient signal processing via algorithmic noise-tolerance,” in Proceedings of the International Conference on Low Power Electronics and Design (ISLPED '99), pp. 30–35, ACM, New York, NY, USA, August 1999. View at Scopus
  20. D. Mohapatra, G. Karakonstantis, and K. Roy, “Significance driven computation: a voltage-scalable, variation-aware, quality-tuning motion estimator,” in Proceedings of the 14th ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED '09), pp. 195–200, ACM, New York, NY, USA, August 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Nair, “Models for energy-efficient approximate computing,” in Proceedings of the 16th ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED '10), pp. 359–360, ACM, New York, NY, USA, 2010.
  22. L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra, “Ersa: error resilient system architecture for probabilistic applications,” in Proceedings of the Conference on Design, Automation and Test in Europe (DATE '10), pp. 1560–1565, European Design and Automation Association, Leuven, Belgium, 2010.
  23. Y.-L. S. Lin, C.-Y. Kao, H.-C. Kuo, and J.-W. Chen, VLSI Design for Video Coding: H.264/AVC Encoding from Standard Specification to Chip, Springer, 1st edition, 2010.
  24. P. G. Bishop, R. E. Bloomfield, T. Clement, and S. Guerra, “Software criticality analysis of cots/soup,” in Proceedings of the 21st International Conference on Computer Safety, Reliability and Security (SAFECOMP '02), pp. 198–211, Springer, London, UK, 2002.
  25. C. Ebert, “Fuzzy classification for software criticality analysis,” Expert Systems with Applications, vol. 11, no. 3, pp. 323–342, 1996. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Anderson, T. Reps, and T. Teitelbaum, “Design and implementation of a fine-grained software inspection tool,” IEEE Transactions on Software Engineering, vol. 29, no. 8, pp. 721–733, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Leveugle, D. Cimonnet, and A. Ammari, “System-level dependability analysis with RT-level fault injection accuracy,” in Proceedings of the 19th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT '04), pp. 451–458, October 2004. View at Scopus
  28. J. Arlat, M. Aguera, L. Amat et al., “Fault injection for dependability validation: a methodology and some applications,” IEEE Transactions on Software Engineering, vol. 16, no. 2, pp. 166–182, 1990. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Kammler, J. Guan, G. Ascheid, R. Leupers, and H. Meyr, “A fast and flexible platform for fault injection and evaluation in Verilog-based simulations,” in Proceedings of the 3rd IEEE International Conference on Secure Software Integration Reliability Improvement (SSIRI '09), pp. 309–314, July 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. N. G. Bourbakis, “Emulating human visual perception for measuring difference in images using an SPN graph approach,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 32, no. 2, pp. 191–201, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. F. P. Mathur and A. Avižienis, “Reliability analysis and architecture of a hybrid-redundant digital system: generalized triple modular redundancy with self-repair,” in Proceedings of the Spring Joint Computer Conference (AFIPS '70), pp. 375–383, ACM, New York, NY, USA, May 1970.
  32. G. B. Dantzig and M. N. Thapa, Linear Programming 1: Introduction, Springer, Secaucus, NJ, USA, 1997.
  33. R. Darst, Introduction to Linear Programming: Applications and Extensions, Pure and Applied Mathematics, M. Dekker, 1991.
  34. J. E. Fritts, F. W. Steiling, J. A. Tucek, and W. Wolf, “MediaBench II video: expediting the next generation of video systems research,” Microprocessors and Microsystems, vol. 33, no. 4, pp. 301–318, 2009. View at Publisher · View at Google Scholar · View at Scopus