Table of Contents Author Guidelines Submit a Manuscript
Journal of Electrical and Computer Engineering
Volume 2013 (2013), Article ID 240814, 14 pages
http://dx.doi.org/10.1155/2013/240814
Research Article

Efficient Parallel Carrier Recovery for Ultrahigh Speed Coherent QAM Receivers with Application to Optical Channels

Laboratorio de Comunicaciones Digitales, Universidad Nacional de Córdoba (CONICET), Avenida Vélez Sarsfield 1611, X5016GCA Córdoba, Argentina

Received 10 December 2012; Accepted 28 March 2013

Academic Editor: Ashkan Ashrafi

Copyright © 2013 Pablo Gianni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Winzer, “Beyond 100G ethernet,” IEEE Communications Magazine, vol. 48, no. 7, pp. 26–30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Crivelli, M. Hueda, H. Carrer et al., “A 40nm CMOS single-chip 50Gb/s DP-QPSK/BPSK transceiver with electronic dispersion compensation for coherent optical channels,” in Proceedings of the IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC '12), pp. 328–330, February 2012.
  3. D. E. Crivelli, H. S. Carrer, and M. R. Hueda, “Adaptive digital equalization in the presence of chromatic dispersion, PMD, and phase noise in coherent fiber optic systems,” in Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM '04), vol. 4, pp. 2545–2551, December 2004. View at Scopus
  4. M. Kuschnerov, F. N. Hauske, K. Piyawanno et al., “DSP for coherent single-carrier receivers,” Journal of Lightwave Technology, vol. 27, no. 16, pp. 3614–3622, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. G. P. Agrawal, Fiber-Optic Communication Systems, Wiley-Interscience, 2nd edition, 1997.
  6. O. E. Agazzi, M. R. Hueda, H. S. Carrer, and D. E. Crivelli, “Maximum-likelihood sequence estimation in dispersive optical channels,” Journal of Lightwave Technology, vol. 23, no. 2, pp. 749–763, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. O. E. Agazzi, M. R. Hueda, D. E. Crivelli et al., “A 90 nm CMOS DSP MLSD transceiver with integrated AFE for electronic dispersion compensation of multimode optical fibers at 10 Gb/s,” IEEE Journal of Solid-State Circuits, vol. 43, no. 12, pp. 2937–2957, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Taylor, “Phase estimation methods for optical coherent detection using digital signal processing,” Journal of Lightwave Technology, vol. 27, no. 7, pp. 901–914, 2009. View at Publisher · View at Google Scholar
  9. A. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Transactions on Information Theory, vol. 29, no. 4, pp. 543–551, 1983. View at Google Scholar
  10. T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” Journal of Lightwave Technology, vol. 27, no. 8, pp. 989–999, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Ip and J. Kahn, “Feedforward carrier recovery for coherent optical communications,” Journal of Lightwave Technology, vol. 25, no. 9, pp. 2675–2692, 2007. View at Publisher · View at Google Scholar
  12. I. Fatadin and S. Savory, “Compensation of frequency offset for 16-QAM optical coherent systems using QPSK partitioning,” IEEE Photonics Technology Letters, vol. 23, no. 17, pp. 1246–1248, 2011. View at Google Scholar
  13. H. Leng, S. Yu, X. Li et al., “Frequency offset estimation for optical coherent m-QAM detection using chirp z-transform,” IEEE Photonics Technology Letters, vol. 24, no. 9, pp. 787–789, 2012. View at Google Scholar
  14. S. Dris, I. Lazarou, P. Bakopoulos, and H. Avramopoulos, “Frequency offset estimation in m-QAM coherent optical systems using phase entropy,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO '12), pp. 1–2, May 2012.
  15. X. Zhou, X. Chen, and K. Long, “Wide-range frequency offset estimation algorithm for optical coherent systems using training sequence,” IEEE Photonics Technology Letters, vol. 24, no. 1, pp. 82–84, 2012. View at Google Scholar
  16. M. Kuschnerov, K. Piyawanno, M. S. Alfiad, B. Spinnler, A. Napoli, and B. Lankl, “Impact of mechanical vibrations on laser stability and carrier phase estimation in coherent receivers,” IEEE Photonics Technology Letters, vol. 22, no. 15, pp. 1114–1116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Gianni, G. Corral-Briones, C. Rodriguez, H. Carrer, and M. Hueda, “A new parallel carrier recovery architecture for intradyne coherent optical receivers in the presence of laser frequency fluctuations,” in Proceedings of the Global Telecommunications Conference (GLOBECOM '11), pp. 1–6, 2011.
  18. N. Stojanovic, Y. Zhao, B. Mao, C. Xie, F. N. Hauske, and M. Chen, “Robust carrier recovery in polarization division multiplexed receivers,” in Proceedings of the Optical Fiber Communication Conference, Technical Digest (Optical Society of America), Los Angeles, Calif, USA, March 2012.
  19. E. A. Lee and D. G. Messerschmitt, Digital Communication, KAP, 1st edition, 1992.
  20. K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, Wiley-Interscience, 1999.
  21. P. Gianni, H. S. Carrer, G. Corral-Briones, and M. R. Hueda, “A novel low-latency parallel architecture for digital PLL with application to ultra-high speed carrier recovery systems,” in Proceedings of the 7th Southern Conference on Programmable Logic (SPL '11), pp. 31–36, April 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Piyawanno, M. Kuschnerov, B. Spinnler, and B. Lankl, “Low complexity carrier recovery for coherent QAM using superscalar parallelization,” in Proceedings of the 36th European Conference and Exhibition on Optical Communication (ECOC '10), pp. 1–3, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. X. Zhou and Y. Sun, “Low-complexity, blind phase recovery for coherent receivers using QAM modulation,” in Proceedings of the Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC '11), pp. 1–3, March 2011. View at Scopus
  24. Q. Zhuge, M. E. Mousa-Pasandi, X. Xu et al., “Linewidth-tolerant low complexity pilot-aided carrier phase recovery for m-QAM using superscalar parallelization,” in Proceedings of the Optical Fiber Communication Conference, Technical Digest (Optical Society of America), Los Angeles, Calif, USA, March 2012.
  25. Q. Zhuge, M. Morsy-Osman, X. Xu et al., “Pilot-aided carrier phase recovery for m-QAM using superscalar parallelization based PLL,” Optics Express, vol. 20, no. 17, pp. 599–519, 2012. View at Google Scholar
  26. I. Fatadin, D. Ives, and S. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photonics Technology Letters, vol. 22, no. 9, pp. 631–633, 2010. View at Google Scholar
  27. D. G. Messerschmitt, “Frequency detectors for PLL acquisition in timing and carrier recovery,” IEEE Transactions on Communications Systems, vol. 27, no. 9, pp. 1288–1295, 1979. View at Google Scholar · View at Scopus
  28. Z. Tao, L. Li, L. Liu et al., “Improvements to digital carrier phase recovery algorithm for High-Performance optical coherent receivers,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 16, no. 5, pp. 1201–1209, 2010. View at Google Scholar
  29. A. N. D'Andrea, U. Mengali, and R. Reggiannini, “The modified Cramer-Rao bound and its application to synchronization problems,” IEEE Transactions on Communications, vol. 42, no. 2, pp. 1391–1399, 1994. View at Google Scholar · View at Scopus
  30. H. Meyr, M. Moeneclaey, and S. A. Fechtel, Digital Communication Receivers, Synchronization, Channel Estimation, and Signal Processing, Wiley-Interscience, 2nd edition, 1997.