Table of Contents Author Guidelines Submit a Manuscript
Journal of Environmental and Public Health
Volume 2018, Article ID 4184190, 106 pages
https://doi.org/10.1155/2018/4184190
Review Article

The Effect of Tobacco Smoking on Musculoskeletal Health: A Systematic Review

1College of Nursing, University of Florida, Gainesville, FL, USA
2College of Health and Human Services, University of North Carolina Wilmington, Wilmington, NC, USA
3College of Pharmacy, University of Florida, Gainesville, FL, USA

Correspondence should be addressed to Ahmad M. AL-Bashaireh; ude.lfu@heriahsablaa

Received 7 December 2017; Accepted 30 May 2018; Published 11 July 2018

Academic Editor: Evelyn O. Talbott

Copyright © 2018 Ahmad M. AL-Bashaireh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This systematic review explored associations between smoking and health outcomes involving the musculoskeletal system. AMSTAR criteria were followed. A comprehensive search of PubMed, Web of Science, and Science Direct returned 243 articles meeting inclusion criteria. A majority of studies found smoking has negative effects on the musculoskeletal system. In research on bones, smoking was associated with lower BMD, increased fracture risk, periodontitis, alveolar bone loss, and dental implant failure. In research on joints, smoking was associated with increased joint disease activity, poor functional outcomes, and poor therapeutic response. There was also evidence of adverse effects on muscles, tendons, cartilage, and ligaments. There were few studies on the musculoskeletal health outcomes of secondhand smoke, smoking cessation, or other modes of smoking, such as waterpipes or electronic cigarettes. This review found evidence that suggests tobacco smoking has negative effects on the health outcomes of the musculoskeletal system. There is a need for further research to understand mechanisms of action for the effects of smoking on the musculoskeletal system and to increase awareness of healthcare providers and community members of the adverse effects of smoking on the musculoskeletal system.

1. Introduction

Tobacco smoke has more than 7,000 harmful chemical compounds that enter a human body either directly through smoking, indirectly through secondhand exposure to smoke exhaled by a smoker, or through downstream smoke released from a cigarette or pipe [1]. Both smokers and nonsmokers are at risk of exposure to the compounds of smoked tobacco that accumulate on the surfaces in a poorly ventilated environment; this method of exposure is known as thirdhand smoke exposure [2]. In the United States, there are approximately 500,000 annual deaths causally related to smoking and secondhand exposure to smoke [3].

Tobacco smoking has known adverse consequences on most human body systems. Researchers have focused more attention on the deleterious effects of smoking for high mortality diseases, such as cancer and diseases of the cardiovascular and respiratory systems, with less research attention on other body systems, such as the musculoskeletal system [3]. The musculoskeletal system is one of the largest human body systems, comprised of bones, joints, muscles, cartilage, tendons, ligaments, and other connective tissues [4]. An intact and functioning musculoskeletal (locomotor) system is necessary to perform activities of daily living and maintain quality of life [5, 6]. Several studies have investigated the association between smoking and musculoskeletal disorders. According to the recent Surgeon General report, the causal relationship between tobacco smoking and rheumatoid arthritis, periodontitis, and hip fractures has been confirmed [3]; however, there is inconclusive evidence to support causality between smoking and many other musculoskeletal disorders.

Searching online databases revealed significant growth in the body of literature investigating relationships between tobacco smoking and the musculoskeletal system. During our comprehensive online search, we did not encounter any systematic reviews examining those relationships; however, we did find 10 systematic reviews of the effects of tobacco smoking on components of the musculoskeletal system. Five systematic reviews focused on smoking and the effects on dental implants and found smoking increases the risk of peri-implant bone loss and implant failure [711]. Another systematic review revealed an association between smoking and lumbar disc herniation [12]. Three other reviews found smoking was related to negative postoperative outcomes on knee ligaments [13], higher complication rates after anterior cruciate ligament (ACL) reconstruction [14], and slowed healing of rotator cuff repair [15]. Also, one review found smoking was associated with rotator cuff tears and other shoulder symptoms [16]. Our review will be the first to collect and assess all the recent literature on the effects of smoking on the musculoskeletal system. This systematic review will orient scientists interested in the health effects of smoking about the state of the science over the last decade as they conduct more advanced research. Also, the amalgamation of these data in one document will be helpful to the research community as there is a high degree of similarity and shared characteristics between musculoskeletal system components.

This systematic review evaluated literature published in the last decade to summarize the evidence regarding the effect of smoking on the musculoskeletal system. This systematic review will answer two main questions: Is there an association between tobacco smoking and musculoskeletal health? What are the effects of tobacco smoking on the musculoskeletal health?

2. Methodology

This systematic review followed the criteria of A Measurement Tool to Assess Systematic Review (AMSTAR). Before the onset of the systematic review, a specific protocol was developed to minimize bias. This protocol included a priori research questions, a comprehensive literature search, inclusion criteria for studies, screening methods and reasons for exclusion, data abstraction, scientific study quality, data analysis, and synthesis.

A comprehensive literature search using PubMed, Web of Science, and Science Direct was conducted. This search covered 10 years from January 1, 2007, to March 18, 2017, and included only articles written in English. The search strategies included a combination of the following key words: smoking, musculoskeletal system, bone, bones, joints, muscles, tendons, ligaments, and cartilage. Medical Subject Headings (MeSH) were used during the search of PubMed. This step was helpful to expand the search; for example, the entry terms for MeSH of smoking were as follows: smoking, cigar smoking, cigar, tobacco smoking, tobacco, hookah smoking, smoking, hookah, waterpipe smoking, waterpipe, pipe smoking, pipe, cigarette smoking, and cigarette. All retrieved records were pulled from databases using EndNote X7. Duplicated records were removed via EndNote or manually when EndNote failed to recognize duplicates discovered by the authors during title/abstract reviews. After that, abstracts of the retained records were screened for inclusion criteria: English language, human subjects, published January 1, 2007–March 18, 2017, and investigating effects of smoking on the musculoskeletal system. Retained records then underwent full-text screening and records that did not meet the inclusion criteria or were editorials, commentaries, dissertations, case studies, or reviews (e.g., overview, systematic review, and meta-analysis) were excluded. A total of 243 final full-text articles were included in the review and used for data abstraction.

Based on an a priori protocol, data abstraction from selected full-text articles included citation (authors, year), study design, sample characteristics (size, age, sex, race/ethnicity, and type of sampling), study purpose, findings, comments, and/or limitations on data quality and validity. Two independent authors (first and second) extracted data using a standard form. The data abstraction process was piloted for the first 10 articles; it was successful and was used for the remaining articles. Any disagreements between authors were resolved through discussion.

The findings in this review were synthesized qualitatively as there was heterogeneity in study designs and populations. Our narrative analyses considered study design and quality.

3. Results

The comprehensive search of the literature identified 8,709 potentially relevant records; however, only 243 records met the inclusion criteria and underwent data abstraction and synthesis (Figure 1). The 243 articles were reviewed and the effects of tobacco smoking on musculoskeletal system were classified into 7 categories: (1) tobacco smoking and bones (n =132), which were subdivided into (a) bone mass: bone mineral density (BMD), bone mineral content (BMC), and bone turnover (n = 40); (b) fractures ( n = 16); (c) alveolar bone (n = 4); (d) periodontitis (n = 34); (e) implants (n = 33); and (f) grafts (n = 5); (2) tobacco smoking and joints (n = 54), which were divided into four subcategories: (a) rheumatoid arthritis (RA) (n = 29), (b) osteoarthritis (OA) (n = 14), (c) spondyloarthritis (SA) (n = 7), and (d) temporomandibular joint disorders (n = 4); (3) tobacco smoking and skeletal muscles (n = 20); (4) tobacco smoking and cartilage (n = 19), which were divided into two subcategories: (a) cartilage (n = 7) and (b) spinal cartilage (n = 12); (5) tobacco smoking and tendons (n = 6); (6) tobacco smoking and ligaments (n = 4); and (7) intrauterine and secondhand smoking effects on the musculoskeletal system (n = 8).

Figure 1: Process of literature search.

This review included studies using various designs: cohort studies (n = 106; 67 were prospective and 39 were retrospective), cross-sectional studies (n = 90), case-control studies (n = 16), randomized control trials (RCTs) (n = 14), and quasi-experimental studies (n = 10). Other study designs included secondary data analysis (n =5) and cross-sequential design (n = 2). Table 1 presents the classification of study designs and related information based on the categories and subcategories. Table 2 summarizes the effect of smoking on major outcomes of musculoskeletal health. Table 3 provides comprehensive information on each study in the review.

Table 1: Summary of study characteristics.
Table 2: Summary for the effect of smoking on major outcomes of musculoskeletal health.
Table 3: Tobacco smoking and musculoskeletal system.
3.1. Tobacco Smoking and Bones (n=132)
3.1.1. Bone Mass: BMD, BMC, and Bone Turnover (n = 40)

Overall characteristics of these studies were as follows: 15 studies were conducted in males, 12 studies were conducted in females, and 13 included both sexes; 22 studies used data or samples from large-scale longitudinal studies; all studies used self-report to assess smoking habits, with the exception of 6 studies that used objective measures in addition to self-report: 3 assessed level of cotinine [24, 48, 49] and 3 assessed level of exhaled carbon monoxide (EXCO) [22, 36, 41]. Table 3 provides comprehensive details on the findings from those studies for effects of smoking on selected bone-related outcomes.

According to a majority of studies, smoking had adverse effects on BMD across age categories and sex. In males, regardless of age, method, and site of measurement for bone density, the cross-sectional studies found smokers had significantly lower BMD than nonsmokers [27, 4244, 46, 52, 54, 55]. The cohort studies found male smokers exhibited a significant decline in BMD [32, 33, 50, 54]. There was only one cross-sectional study that reported no significant difference in calcaneus BMD between 3 groups: an alcohol drinking-only group, combined alcohol drinking and smoking group, and control nondrinking/nonsmoking [39]. In adolescent females, 2 cross-sectional studies found a high frequency of smoking was associated with lower rate of total body BMC [29] and hip BMD [28, 29]; these findings were supported by cohort studies that found initiation of smoking at age 13 affected bone accrual and was associated with low mean BMD at age 17 [33, 47]. Another cross-sectional study of adolescent females reported significant linear relationships between urinary cotinine and BMD of the femoral neck, total femur, and lumbar spine [48]. However, only one cross-sectional study in adolescent females found no significant difference in BMC and BMD between smokers and nonsmokers [30]. In premenopausal women, one cross-sectional study reported the BMD of smokers was not significantly different than the BMD of nonsmokers [20].

In postmenopausal women, cross-sectional study findings demonstrated postmenopausal women who smoked had significantly lower BMD than postmenopausal women who did not smoke [23, 56] and an increased risk of falls regardless of the BMD T-score [21]. Two randomized control studies were conducted in postmenopausal women. One study found consumption of blackberries was effective in reducing bone loss of the total body BMD in a smokers’ group (P = 0.0284) [38]. Another study found quitting smoking significantly associated with increased body weight, fat, muscles, and functional mass that affected BMD [41]. A study using data from one RCT found administration of nasal estradiol for 2 years increased the lumbar spine BMD of smokers (P = 0.03) but did not increase total hip BMD (P = 0.89)[18]. Finally, two cross-sectional studies enrolled both males and females, and one reported BMD and BMC were significantly lower in smokers than those of nonsmokers [26]; the second study used a small sample and found no association between pack-years and BMD [31].

Biological mechanisms were examined in several studies, most of which were cross-sectional. A comparative analysis of smokers to nonsmokers found smokers had a higher receptor activator of nuclear factor-B ligand (RANKL-positive) CD4 (+) and CD8 (+) T cells (All P < 0.001) [25], a lower periosteal gene expression of bone morphogenetic proteins (BMP-2, BMP-4, and BMP-6) [24], and a lower mean concentration of bone marrow progenitor cells (BMPCs) (P = 0.004) [17]. Both BMP and BMPCs are required for musculoskeletal healing and regeneration. Smokers also had lower antioxidant enzymes (superoxide dismutase, glutathione peroxidase, and paraoxonase), higher levels of oxidative stress products (malondialdehyde, nitric oxide) (P < 0.001) [23], lower levels of parathyroid hormone (PTH) [34, 36], vitamin D [26, 36, 37], biomarkers of serum osteocalcin, and 24-hour urinary excretion of calcium [34].

The correlational analysis did not find a significant effect for serum osteocalcin (OC) or tartrate resistant acid phosphatase isoenzyme 5b (TRACP 5b) [55]. The interaction between smoking and other compounds found smoking with calcium intake did not reach statistical significance for BMD [19]; however, elderly women with the lowest tertile of choline who were exposed to nicotine had the highest risk for low BMD (OR=4.56, 95%CI: 1.87-11.11) [49]. One prospective study found growth hormone (GH) therapy after 3-5 years did not significantly improve total BMC of smokers (P = 0.09) [40].

The interaction between smoking and genetic factors was also investigated. A potential interaction was reported between smoking and receptor-related Protein 5 (LRP5) C135242T (rs545382) on osteoporosis in postmenopausal women [35] and between smoking and polymorphism of glutathione S-transferases (GSTT1) on bone quality index in young adult men [45]. One cross-sectional study reported a relationship between PTH and hip BMD only for nonsmokers [53]. Finally, in a cross-sectional methodological study, a strong correlation between bioelectrical impedance analysis (sBIA) and dual energy X-ray absorptiometry (DEXA)] regarding whole-body fat mass (FM) and lean mass (LM) (r > 0.9, p < 0.001) was found [51].

3.1.2. Fracture (n = 16)

The overall characteristics of these studies were as follows: 12 studies were conducted in both sexes: 2 studies in females only [61, 71] and 2 studies in males only [62, 70]; 12 studies were cohort studies; 3 obtained data or samples from large-scale longitudinal studies; all studies used self-report to assess smoking habits with the exception of one study that assessed levels of cotinine [67]. Table 3 provides comprehensive details on studies which examined the prevalence of fracture in smokers, the association between smoking and fracture risk, fracture healing, the biological mechanism of fracture in smokers, and the interaction of smoking and other fracture risks.

Fracture was more prevalent in male smokers than in the males who never smoked (P < 0.05) [70]. Smoking was also found to increase the likelihood of fracture. In one cohort study of elderly men, current smoking increased the risk of all new [hazard ratio (HR) = 1.76, 95% Cl: 1.19-2.61] and osteoporotic fractures (HR = 2.14, 95%Cl: 1.18-3.88) [62]. Similar findings were reported in elderly women; former and current smokers compared to nonsmokers had increased risk for fracture [59, 71], including nonvertebral fractures in patients with diabetes (OR = 3.47, 95%CI: 1.82-6.62, P = 0.001) [61]. Regardless of fracture site, six cohort studies and one case-control study examining both sexes found smoking was significantly associated with poor fracture outcomes, such as nonunion (P < 0.01) [57, 58, 60, 66], lower trabecular strength (beta = -0.323; P = 0.045) and toughness (beta = -0.403; P = 0.018) [68], and delayed mean healing time [64]. No significant association was found between fracture and delay in filling [69] work absenteeism (P = 0.1177) [66] or low mental and physical-function scores on the Short Form 36 (SF-36) [66].

Two prospective cohort studies of both sexes investigating the postsurgery level of serum transforming growth factor-beta 1 (TGF-beta 1) found TGF-beta 1 was lower in smokers than in nonsmokers at 4 weeks [65] and 8 weeks [63]. The trend of lower level of TGF-beta 1 in smokers than that of nonsmokers was observed in both groups of patients with normally healed fractures and delayed healed fractures [65]. Finally, two studies examined interactional effect of smoking and other factors. In the first study, changes in BMI had an effect on fracture risk in nonsmokers, but not in smokers [72]. In the second study, plasma dimethylglycine (DMG) increased the risk of hip fracture in cohort of elderly males and females (HR = 1.70, 95 % CI: 1.28-2.26), and such risks were noticeably increased in women exposed to nicotine (HR = 3.41, 95%CI: 1.40-8.28) [67].

3.1.3. Alveolar Bone (n = 4)

In two cross-sectional studies, one study found smokers had significantly lower alveolar bone density values (P ≤ 0.002) and a greater distance from cemento-enamel-junction to the alveolar bone crest (P < 0.0001) [74]. The second study did not find smoking significantly correlated with alveolar crest height loss [75]. The third cross-sectional study found smoking negatively affected the expression of bone sialoprotein (BSP) and osteocalcin (OC) mRNA (P< .05) and positively altered the expression of Type I collagen (COL-I) (P< .05); however, smoking was not statistically correlated with the expression of mRNA for tumor necrosis factor-alpha (TNF-α), transforming growth factor-beta (TGF-β), or osteoprotegerin (OPG) [73]. The fourth study, an RCT, found that, despite involvement of smokers in dental hygiene program, smokers had significantly lower density of alveolar bone by Day 365 (P < 0.05) and Day 545 of follow-up during the dental hygiene program (P < 0.01) [76]. Table 3 provides comprehensive details on the 4 studies that examined the effect of smoking on the alveolar bone.

3.1.4. Periodontitis (n=34)

Thirty-four studies examined the prevalence and clinical parameters of periodontitis in smokers, the biological mechanism of smoking, the interaction between smoking and periodontitis risk factors, and interventions to minimize periodontitis in smokers. The characteristics of these studies were as follows: 27 studies were conducted in both sexes; 7 studied males only. Twenty-four studies were cross-sectional, 5 studies were RCTs, 4 studies were cohort, and 1 study was a case-control. Two studies out of 34 obtained data or samples from large-scale longitudinal studies. All the studies used self-report to assess smoking, with the exception of three studies that assessed levels of cotinine [88, 99, 101]. Table 3 provides comprehensive details on the studies that examined the relationship between smoking and periodontitis.

Eleven studies investigated the prevalence and association of smoking on periodontitis and periodontal parameters. Ten studies were cross-sectional. The comparative analysis found smokers compared to nonsmokers had significantly deeper periodontal pockets [77, 89, 90, 92, 108], higher mean clinical attachment loss (CAL) [78, 91, 92, 108], higher mean plaque scores [78, 91, 92], greater fraction of teeth with apical periodontitis [79], higher marginal bone loss, and a greater number of missing teeth [92]. In a correlational analysis, smoking was strongly associated with alveolar bone loss [84] and the percentage of palatal periodontal pockets ≥ 6 mm [77]. Heavy smoking was also associated with higher prevalence [79, 94] and severity of periodontitis [77, 94]. A comparative study between different modalities of smoking found cigarette smokers had higher frequency of probing pocket depth ≥ 4 mm and a higher incidence of severe periodontitis compared to nontobacco users [90]. Two studies compared cigarettes smokers to waterpipe and narghile users and found a similarity between groups on most periodontal parameters [92, 95].

Fourteen studies examined the potential biological mechanism for smoking in periodontitis and what potential biomarkers may be affected. Thirteen studies were cross-sectional designs and enrolled both sexes. Three studies examined smoking and nonsmoking subjects without periodontitis and found smokers had significantly higher synthesis of lipoxygenases and isoprostanes in the extracted periapical granuloma [83], higher whole salivary IL-1 beta and IL-6 (P < 0.05) [93] but a lower total amount of platelet-derived growth factor (PDGF-AB) (P = 0.014) in gingival crevicular fluid [85]. Four studies were conducted in smokers and nonsmokers with periodontitis and found smokers had significantly lower levels of salivary osteocalcin (OC) (P < 0.001) [88]; a lower median serum level of OPG (P = 0.0006) [88]; higher levels of prostaglandin E-2, lactoferrin, albumin, aspartate aminotransferase, lactate dehydrogenase, and alkaline phosphatase [96]. The groups had similar levels of salivary C-telopeptide pyridinoline cross-links of Type I collagen (P > 0.05) [88]; median serum receptor activator of nuclear factor kappa-B ligand (RANKL) (P = 0.0942) [99]; and gingival crevicular levels of RANKL and osteoprotegerin (OPG) [107] and similar proportion of identified pathogens [96]. Seven studies enrolled both smokers and nonsmokers in groups with or without periodontitis. Based on periodontal status, the group with periodontitis (smokers and nonsmokers) had significantly higher plasma sRANKL, TNF, a proliferation-inducing ligand (APRIL and BAFF) and lower OPG (P < 0.01) [101], and higher salivary OC (P < 0.05) [102] than the healthy control group (smokers and nonsmokers without periodontitis). Interestingly, these two studies found levels for some of these markers were altered by smoking; sRANKL and TNF concentrations were significantly greater (P = 0.011, P = 0.001; respectively), and OPG concentration was significantly lower (P = 0.001) in smokers with periodontitis; however, such trend was not seen for salivary OC [101, 102]. The results from these studies indicated that smokers had more lymphocyte and higher levels of both IFN-γ and IL-13, regardless of periodontal status [82], had higher salivary sCD44 profiles (P < 0.001) with the highest levels recorded in smokers in the periodontitis group [87], and had significantly higher levels of salivary calcium level (P< 0.05) [97]. A subgroup analysis for smoking and periodontal status found that smokers with chronic periodontitis exhibited significantly higher levels of sIgA [98] and lower plasma OPG concentrations (P = 0.007) but higher sRANKL/OPG ratio (P = 0.01) than smokers without periodontitis [103]; however, smokers and nonsmokers with periodontitis exhibited similar values for plasma sIgA, sRANKL, and OPG concentrations. Smoking is one of the greatest risks for periodontitis and may increase host susceptibility to tissue destruction especially in presence of other factors such as the functional defect of leukocyte and monocyte [98]. These findings indicate periodontal inflammation in smoker with chronic periodontitis patients, as evidenced by high levels of sIgA, seems to lower plasma OPG levels and thereby increase the RANKL/OPG ratio and possibly play a role in the increased susceptibility for alveolar bone destruction in smoker subjects.

One cross-sectional study suggested the interaction between smoking and vitamin D receptor gene polymorphism (CC+CT genotypes of FokI) increased the risk of periodontitis (OR = 9.6, 95%CI: 4.5- 20.4). The combined effect was 3.7 times greater than expected from the sum of individual effects [80]. Eight interventional studies examined therapies to manage periodontitis. One observational cohort study that monitored the effect of smoking cessation found quitters had a higher reduction of mean probing depth and CAL relative to nonquitters (P ≤ 0.05) [105]. Another prospective observational study found periodontal maintenance therapy every 3-4 months inhibited the progression of CAL, probing depth, and tooth loss in smokers [86]. Wan et al. [109] found in a prospective cohort study that anterior teeth, sites without plaque, and nonsmoking were significantly associated with a greater reduction in probing pocket depth [109]. Three RCTs found adjunct treatments of low-dose doxycycline for 6 months [100], systemic azithromycin [81], or a daily dose of 325 mg of aspirin [106] did not significantly improve periodontal parameters in smokers with chronic periodontitis. In contrast, 2 RCTs in smokers with chronic periodontitis successfully improved some periodontal parameters. Compared with treatment using only scaling and root planing (SRP), the treatment using Simvastatin (1.2% biodegradable controlled-release gel) as an adjunct to scaling and root planing (SRP) significantly reduced probing depth and significantly increased bone filling (all P < 0.001) [104]. Smoking is one of the greatest risks for periodontitis and is associated with poor periodontal parameters; such finding provides evidence that the treatment used Simvastatin besides SRP in smokers suffering from chronic periodontitis was more effective in reducing the negative effect of smoking on the periodontal parameter than the treatment using only SRP. The second RCT found the treatment using modified YJ (mYJ) Chinese medicinal herbs in a nonsurgical treatment for smokers suffering from periodontitis was associated with higher computer-assisted densitometry values than the treatment using original YJ Chinese medicinal herbs with nonsurgical treatments (P = 0.025) [110]. Also, this finding provides evidence that the use of mYJ Chinese medicinal herbs in a nonsurgical treatment was effective in reducing the negative effect of smoking on the periodontal parameter as evidenced by the increases in radiographic alveolar bone density.

3.1.5. Bone Implants (n = 33)

There were 33 studies which investigated implant survival/failure rates, clinical parameters of success/failure, risk factors of implant survival, interaction between smoking and risk factors on the implant survival, effects of implants on surrounding tissue, complications associated with implants, biological mechanisms of smoking effect on implants, and interventions to reduce the effects of smoking and enhance implant survival rate in smokers. The characteristics of these studies were as follows: all 33 studies examined dental implants and enrolled both sexes; 19 were cohort studies; 7 were cross-sectional studies; 4 were RCTs; and 3 were case-control studies. Eleven studies had small samples. All studies used self-report to assess smoking. Table 3 provides comprehensive detail on these studies exploring the effects of smoking on bone implants.

Thirteen studies examined the effect of smoking on dental implant survival with special consideration of implant type and time of follow-up. Eleven studies were cohort studies. Two studies investigated smoking and early implant failure and the first study found early implant failure was threefold higher in smokers than nonsmokers [141] while the second study found frequency of tobacco smoking was not associated with early implant failure [136]. Ten studies examined long-term survival/failure of dental implants. Two studies reported smoking did not influence implant survival rates [115, 123], although 8 studies provided contradictory findings. A correlation analysis found smoking status [112, 139], and pack-years [139] were inversely associated with dental implant survival. A comparative analysis between smokers and nonsmokers found smokers had lower implant survival rates [114, 119, 124, 130, 132, 142]. A subgroup analysis based on implant type found smokers had higher failure rates for turned [132] and smooth-surface implants [114]. One study of only tobacco smokers found implant survival with turned or screw surfaces was similar in tobacco smokers regardless of periodontal status [111]. Five of 13 studies measured marginal bone loss; 4 reported smokers demonstrated significantly greater marginal bone loss than nonsmokers [119, 123, 141, 142], and two studies did not report a significant difference [130, 131].

Six studies examined the clinical effects of implants on surrounding tissue in smokers. One retrospective cohort study found smoking was associated with overall complications (e.g., implant loss, infection, peri-implantitis, and mucositis) (P = 0.008) [129]. Five studies examined histometric parameters for dental mini-implants, and one case-control study carried out on smokers found mean bone-to-implant contact (BIC%) better in sandblasted acid-etched surfaces than machined surfaces (22.19 ± 14.68% versus 10.40 ± 14.16%, P < 0.001) [117]. Smoking is associated with increased risk of bone implant failure due to its negative effect on tissues surrounding the implant; such finding indicates that the negative effect of smoking on histometric measurements after dental mini-implants was significantly minimized through using of implants with sandblasted acid-etched but it was not improved with the use of implants with machined surfaces. The remaining 4 studies were prospective cohort studies and found smokers had significantly lower BIC% [120, 133], lower bone density in thread areas (BA%) [133], less stability at 3, 4, 6, and 8 weeks after surgery [135], and less regrowth of papillae and midfacial soft tissue [128].

Eight studies examined the biological mechanism of smoking on tissue surrounding dental implants and explored potential biomarkers that could be affected by this mechanism. Five of eight were cross-sectional studies; one study analyzed peri-implants fluid of smokers’ prior implant placements and found smoking negatively altered the mRNA expression of bone sialoprotein (BSP) and osteocalcin (OC) and positively affected the expression of Type I collagen (COL-I) (P < 0.05). However, smoking was not correlated with the expression of TNF-α, transforming growth factor-beat (TGF-β), or OPG (P > 0.05) [73]. Four studies analyzed peri-implant fluid and found smokers and nonsmokers had similar levels of pathogens [113, 140], OPG, and RANKL/OPG [126]. However, there were contradictory findings regarding the level of cytokines (IL-4, IL-8, or TNF- α) in smokers and nonsmokers, as they were reported to be similar in one study [113], significantly lower in one study [126], and significantly higher in yet another study [137]. One case-control study found heavy smokers with an IL-1 polymorphism did not increase their risk for peri-implantitis [121]. One short-term prospective study found a 7-day follow-up for the whole genome array of implant adherent cells was not different between smokers and nonsmokers [138]. The long-term prospective cohort study found smokers with previous periodontal disease had significant clinical signs of inflammation and significantly higher counts of pathogenic bacteria [127].

Four studies were randomized control trials; 2 measured peri-implant parameters for implants with different configurations. One trial found smoking did not influence peri-implant soft tissue response (recession and the papilla index) [116]; a second study found smoking doubled marginal bone loss regardless of treatment [134]. One methodological RCT using stereolithographic surgical guides found smoking was associated with inaccurate implant placement [118]. A therapeutic RCT found mechanical debridement with adjunct antimicrobial did not significantly improve parameters of bleeding on probing, probing depth, or crestal bone loss in smokers [122]. There were positive outcomes (high implant survival, bone level, and low rate of biological complications) reported by one retrospective cohort study where the authors monitored dental implant rehabilitation in patients with systemic disorders and smoking habits [125].

3.1.6. Bone Graft (n = 5)

Two of the 5 studies were randomized clinical trials. The first trial found smokers who received an acellular dermal matrix graft (ADMG) with enamel matrix derivative (EMD) had a higher mean gain in recession height and root coverage than smokers who received ADMG alone [143]. This finding indicates that the treatment combining EMD with ADMG was found to be more effective in reducing the negative effect of smoking on root coverage than the treatment using only ADMG. A second trial found regenerative treatment of platelet-rich plasma combined with a bovine-derived xenograft did not improve periodontal parameters in smokers [147]. Three long-term prospective cohorts compared smokers to nonsmokers and found smokers had significantly higher marginal bone loss up to 4 years after onlay bone grafting in the atrophic maxilla [145]. These patients also had higher tissue inflammation around augmentation sites once they received bone graft titanium- reinforced ePTFE membranes [144] and had similar survival rates for dental implants after A Le Fort I osteotomy and interpositional bone graft in combination with implants in the atrophic maxilla [146]. Table 3 provides comprehensive details on the 5 studies that examined the effects of smoking on bone graft.

3.2. Tobacco Smoking and Joints (n = 54)
3.2.1. Rheumatoid Arthritis (n = 29)

The overall characteristics for these 29 studies were as follows: all studies enrolled males and females, 17studies were cohort studies, 7 were cross-sectional studies, 3 were case-control studies, 1 was an RCT, and 1 was a secondary analysis. Twelve studies obtained data or samples from large-scale longitudinal studies and all used self-report to assess smoking habits with an exception of one study that assessed level of cotinine [159]. Table 3 provides comprehensive detail about studies that examined the effect of smoking on several outcomes in patients with RA.

Five studies of varying design (2 cross-sectional studies, 2 prospective cohort studies, and 1 case-control study) enrolled patients from both sexes of similar age. These studies examined the effect of smoking on RA clinical outcomes, such as disease activity, functional capacity, radiographic damage, serology, and existence of extraarticular manifestations. Overall, the collective results were that smokers had significantly higher scores on the Disease Activity Score of 28 joints (DAS 28) [162, 167], the functional disability score (Health Assessment Questionnaire) [162], the simple erosion narrowing score [167], CRP [162], and a rheumatoid factor titer [167]. These patients demonstrated severe extraarticular RA [162] and took significantly more disease-modifying antirheumatic drugs (DMARD) [176]. One study reported no difference in DAS28 and radiographic scores between smokers and nonsmokers [176]. Smoking was found to be independently associated with DAS28-CRP3 in human leukocyte antigen-shared epitope (HLA-SE-positive) patients, but not in HLA-SE-negative patients (P for interaction = 0.02) [158], higher Modified Health Assessment Questionnaire [158] scores, and greater number of rheumatoid nodules [161]. Smoking and RA remission were investigated in two studies. A cross-sectional study reported current smokers had higher remission rates than persons who had never smoked or former smokers [154]; however, a prospective cohort study reported lower remission rates in current smokers compared to persons who had never smoked or former smokers at 12-month follow-up [169]. Two prospective studies examined smoking on RA progression, and one study with a large sample size reported radiographic progression for joint damage was not significantly different between smokers and nonsmokers (P = 0.26), but further analysis by authors found smoking intensity (pack-day) to be inversely associated with radiographic progression [152]. Meanwhile, a second study with a small sample size found current smoking associated with radiographic progression [165].

There were 10 studies that examined the effect of smoking on response to RA therapies. A first group of 5 cohort studies was conducted in patients with early stage RA. Four studies found smoking associated with poor response after 3 months of methotrexate or anti-TNF-α therapy [166], after 6 months of combined therapy of methotrexate and sulfasalazine [163], and after 12 months of glucocorticoids and DMARDs [169, 170]. One study reported no difference in response to therapy after 12 months’ follow-up in patients who continued or quit smoking [175]. Similar findings were reported in 5 studies that enrolled RA patients regardless of disease stage. Four studies reported current smoking was associated with poor response after 3 months [148, 160, 171] and 12 months [160] of anti-TNF-α therapy and after 48 and 102 weeks of therapy that included methotrexate [159]. One of the 5 studies reported exposure to secondhand smoking did not influence the response to RA therapy after 3, 6, and 12 months and 2 years [168].

Seven studies (2 case-control studies, 3 cohort studies, 1 cross-sectional study, and 1 secondary analysis) investigated the interaction between smoking and other factors on RA. The results of these studies found a significant increase in disease activity when there was an interaction between heavy smoking and HLA-DR beta 1 4-amino acid haplotype primarily Positions 11 and 13 [155], between smoking and all positive anti-citrullinated peptide antibodies (ACPA) [153, 157, 164], and between ever smoking and mannose-binding lectin (MBL2) genotype YA/YA [156]. Further results were increased signs of joint inflammation in first-degree relatives who were younger than 50 and had smoked more than 10 pack-years [172]. There was no interaction found between smoking and endothelial growth factor A haplotype [VEGFA-2578 AA genotype and (A_2578-C_460-G+405)], but endothelial growth factor A haplotype was found to be associated with reduced disease activity in patients of RA who had never smoked [151]. Four studies investigated smoking effects on certain mechanisms and biological markers in patients with RA. One prospective cohort study found smoking and ACPA predicted persistence of high levels of survivin (OR = 4.36, 95% CI: 2.64-7.20, P < 0.001, positive predictive value 0.66, and specificity 0.83) [174]. Two cross-sectional studies compared level of essential and trace elements of smoker and nonsmokers with RA and matched healthy controls of smokers and nonsmokers to determine if there were any associations between toxic elements, cigarette smoking, deficiency of essential trace elements, and risk of arthritis. One study found smokers and nonsmokers RA patients had significantly higher hair levels of toxic elements (Cd and Pb) and lower hair levels of trace elements (Zn, Cu, and Mn) than those of smokers and nonsmokers healthy individuals [149]. The second study found smokers with RA had significantly higher hair and blood levels of toxic element (Cd, Pb, Hg, and AS) and lower hair and blood levels of trace elements (Zn, Cu, Mn, and Se) [150]. Finally, another cross-sectional study reported smoking pack-years was inversely correlated to body fat composition in patients with RA [173].

3.2.2. Osteoarthritis (n = 14)

Three cross-sectional studies provided disparate findings on the effects of smoking and OA. One study reported smoking was not significantly associated with hand OA in a Chuvashian community [182]; two other studies reported an inverse relationship between smoking and radiographic knee OA (P = 0.019) [190] and between indirect smoking and knee and hip OA (OR = 0.271; 95% CI: 0.088-0.828) [183]. One prospective study reported smoking was not significantly associated with the prevalence or incidence of radiographic knee OA [188]. Three prospective studies found smoking associated with higher pain scores [177, 178], increased risk for cartilage loss at the medial tibiofemoral joint (OR = 2.3, 95% CI:1.0 - 5.4), and increased risk for cartilage loss at the patellofemoral joint (OR = 2.5, 95% CI: 1.1 - 5.7) [177]; however, smoking reduced the risk of total joint replacement (TJR) in presence of [rs1051730 T] alleles (HR = 0.84, 95% CI: 0.76 – 0.98, per T allele) [181]. Two prospective studies found smoking significantly associated with higher complication rates [189], but not with functional outcomes after a tibial osteotomy in patient with RA [180]. There were five studies that examined the association of smoking with the risk for joint replacement and the risk for complications after joint surgery. Two cohort studies investigated the risks for joint surgery: one prospective cohort study reported smoking increased the risk for total joint replacement (TJR) in males [186]; however, conflicting evidence was reported by another retrospective cohort study that found an inverse association between smoking and TJR (adjusted-HRs: 0.60; 95% CI: 0.48-0.75, and 0.70; 95% CI: 0.56-0.86 in men and women, respectively), but this study investigated the risk for only primary TJR and included both sexes [187]. Another prospective study of patients who underwent total hip or knee arthroplasty found no difference in perioperative mortality rates between smokers and nonsmokers; however, smokers had a higher complication rate [179]. In two retrospective studies, smoking significantly increased the risk for early failure of total hip arthroplasty [185] and wound breakdown after total ankle replacements [184]. Table 3 provides comprehensive details on the 14 studies in this subsection.

3.2.3. Spondyloarthritis (n = 7).

Three of these seven studies investigated the effects of smoking on biological markers in patients with SA; 5 studies investigated effect of smoking on clinical, functional, and imaging outcomes of SA. Three cross-sectional studies found smoking was associated with lower matrix metalloproteinase-generated Type II collagen fragment in patients with SA (P = 0.02) [193] and higher level of vascular endothelial growth factor in patients with ankylosing spondylitis (VEGF) (P < 0.05) [195, 196]. Three cross-sectional studies, two in patients with ankylosing spondylitis and one in patients with early axial spondyloarthritis, and one prospective cohort study in patients with early axial spondyloarthritis reported smoking was associated with higher pain scores [191, 192], disease activity and functional status [191, 192, 195], poor quality of life [191, 192], and spinal radiographic/MRI progression [191, 194]. Also, pack-years were positively correlated with duration of inflammatory back pain (r = 0.628, P < 0.001), Bath AS Functional Index (BASFI) (r = 0.443, P < 0.001), and the severity of radiographic damage assessed by the modified Stroke AS Spine Score (mSASSS) (r = 0.683, P < 0.001) [195]. Finally, one case-control study found collagen IX tryptophan (Trp+2) alleles and smoking status did not influence the risk for cervical spondylotic myelopathy (OR = 1.34, 95% CI = 0.85-2.18, P > 0.05); however, smoking intensity with collagen IX tryptophan (Trp+2) exhibited a dose-response relationship with cervical spondylotic myelopathy [197]. Table 3 provides comprehensive details about the 7 studies that examined the effects of smoking on SA.

3.2.4. Temporomandibular Joint Disorders (n = 4)

Of the four studies in this subsection, 4 studies with varying designs compared smokers to nonsmokers and found smokers had higher temporomandibular joint disorder (TMD) pain intensity [198201]. Further analysis of these studies found no differences in pain intensity between smokers and nonsmokers after adjustment for demographic variables [201]. The number of cigarettes was associated with pain intensity only in females [198] and females younger than 30 were more likely to develop TMD symptoms than females over the age of 30 [200]. Table 3 provides comprehensive details on the four studies in this subsection.

3.3. Tobacco Smoking and Skeletal Muscles (n = 20)

Compared to bones and joints, few studies investigated the effect of tobacco smoking on skeletal muscles. The overall characteristics of these 20 studies were as follows: 11 studies enrolled both sexes, 8 enrolled only males, and 1 enrolled only females, 10 studies were quasi-experimental, 5 were cross-sectional studies, 4 were cohort studies, and 1 was a case-control study, and all studies used self-report to assess smoking habits. Table 3 provides comprehensive details on these studies which examined the effects of smoking on the anatomical, biological, metabolic, physical, and functional outcomes of skeletal muscles.

Two studies investigated the association between smoking and the anatomy of skeletal muscles. A cross-sectional study reported smokers had lower Types I and IIa muscle fibers than nonsmokers indicating smokers’ skeletal muscles had oxidative fiber atrophy [204]. The prospective cohort study of only males reported rectus femoris volume (RFVOL) at baseline (prior training) was lesser in smokers than in nonsmokers, although RFVOL was significantly increased with training, and due to those authors suggested that training reversed the effects of smoking [214]. Three quasi-experimental studies investigated the biological effects of smoking. The results of those studies reported smokers had decreased local muscle O2Hb [206], thiobarbituric acid [211], and catalase [211] levels, an increase in inflammatory markers (sTNFR1) [211] and similar VO2 [206, 211], lactate [206], superoxide dismutase (SOD) [211], and succinate dehydrogenase (SDH) activity [220], inflammatory cytokines (IL-6, IL-10, and sTNFR2), myoglobin concentration [220], and capillarization [220] during leg muscle exercises.

Twelve studies examined the effects of smoking on physical and functional properties of skeletal muscle: 7 studies examined muscle strength, 2 studies examined muscle thickness, and 3 focused on maximal voluntary contraction. The findings of the 3 pretest/posttest, 2 prospective cohort, and 2 cross-sectional studies on muscle strength were that smoking was significantly associated with a reduction in back extensor muscle strength [202, 208], grip strength [203, 215], and knee muscle strength [207]. One prospective cohort study reported that parameters of body composition and muscle strength were increased in subjects who quit smoking compared to subjects who continued smoking [218]. One study reported an inverse correlation between pack-years and muscle strength [217]. Two pretest/posttest studies were not congruent in terms of findings regarding percentage of change in muscle thickness (PCMT) and relative contribution ratio (RCR) of both internal oblique (IO) and transversus abdominis (TrA) muscles [205, 209]. The first study reported PCMT and RCR were not significantly different between smokers and nonsmokers [209]; however, the second study reported significant differences between smokers and nonsmokers in regard to PCMT of the TrA and in RCR of both TrA and IO [205]. Three pretest/posttest studies of male smokers and nonsmokers had similar findings regarding the maximal voluntary contraction for quadriceps muscles [210, 221], rectus abdominis, and external oblique [216]; however, maximal voluntary contraction was significantly higher in smokers than in nonsmokers [216].

Three studies (case-control, cross-sectional, and prospective cohort) investigated the interaction of smoking and obstructive lung disease on skeletal muscles. Those studies found smoking in the presence of obstructive lung disease to be significantly associated with increased muscle injury [212] and lower weight and lean mass [219]; however, smoking, regardless of patient spirometry status, was the only independent variable associated with lower quadriceps Klotho levels [213].

3.4. Tobacco Smoking and Cartilage (n = 19)
3.4.1. Knee Joint Cartilage (n = 7)

Four studies (2 prospective cohorts, 1 case-control, and 1 cross-sectional) described the effect of smoking on knee joint cartilage. A cross-sectional analysis of these studies found both smoking and pack-years were positively associated with the volume of tibia cartilage [228] and femoral medial, intercondylar, and lateral cartilage [226]. There was an inverse association between smoking and cartilage strain ratio [226].There was no consensus regarding the risk of tibiofemoral cartilage defects; one study reported smokers experienced a higher risk for medial and lateral tibiofemoral cartilage defect (OR: 4.91, P < 0.05), and such risk was increased with pack-years (OR 9.90 and OR 12.98, respectively, for heavy smoking versus never smoked, P < 0.05) [225]; another study reported smoking was not associated with tibiofemoral cartilage defect [228]. Interestingly, the prospective cohort study found both smoking and pack-years associated with an increased annual loss of medial but not lateral tibia or patellar cartilage [224]. There were 3 studies (2 cohorts and 1 case-control) that reported on the postoperative effects of smoking. Smokers experienced significant early meniscus repair failure (P = 0.0076) [223], less improvement in Modified Cincinnati Knee score after 2 years of autologous chondrocyte implantation surgery for full-thickness chondral defects of the knee (P < 0.05) [227], and a lower satisfaction rate after knee microfracture intervention [222]. Table 3 provides comprehensive details on the 7 studies in this subsection.

3.4.2. Spinal Cartilage (n = 12)

Twelve studies examined the effects of smoking on spinal cartilage. One secondary data analysis reported smoking was not associated with disc degeneration and low back pain; however, the combination of smoking and hard physical work increased risk of vertebral inflammatory processes (OR = 4.9, 95%CI: 1.6-13.0) [236]. There were 11 cohort (10 retrospective, 1 prospective) studies of patients who underwent spinal surgery. Interestingly, these studies found smoking was significantly associated with an increased risk of reoperation [230, 237, 238], higher infection rates [235, 239], higher risk of 30-day morbidity (P = 0.04) [239], and use of analgesic medication [234, 240], but there was no consensus on spinal fusion rate, length of stay, or complication rate. Three studies reported smoking was significantly associated with a lower spinal fusion rate [232, 234, 235]; however, one study reported spinal fusion rate was not affected by smoking status [231]. One study reported smoking was associated with longer length of hospital stay (P < 0.001) [235], whereas the other study reported no association with length of hospital stay (P = 0.99) [233, 237]. Two studies reported smoking was not associated with overall complications [229, 233]. Table 3 provides comprehensive details for the 12 studies that enrolled both sexes and investigated the association of smoking with vertebral disc degeneration, pain, and the effect of smoking on spinal surgery outcomes.

3.5. Tobacco Smoking and Tendons (n = 6)

Three studies investigated rotator cuff tendons; two cross-sectional studies reported smokers presented with more advanced degenerative changes in their supraspinatus tendons (P < 0.001) [245] and reported that a higher total of smoked cigarettes was associated with the severity of rotator cuff tears (Type II versus Type I, P = 0.032) [242]. The retrospective cohort study in patients with calcified calcific tendinitis of the rotator cuff found smoking was significantly associated with a failure of needle aspiration of calcific deposits (nACD) (adjusted OR = 1.7, 95% CI: 1.0-2.7, P = 0.04) [246]. One case-control study reported smokers had significantly thinner patellar and Achilles tendons in the proximal, middle, and distal thirds region of the tendons and significant lower strain ratio measurements in the same regions (P < 0.05); pack-years were inversely related to patellar tendon thickness (P < 0.05) [241]. One cross-sectional study reported smokers had significant improvement in finger range of motion over nonsmokers after tendon grafting [243]. Finally, one prospective study reported that the Constant score was significantly lower in smokers than nonsmokers 1 year postoperatively after rotator cuff reconstruction (71 versus 75, P = 0.017) [244]. Table 3 provides comprehensive details on the 6 studies that investigated the effects of smoking on the anatomical or functional characteristics of tendons.

3.6. Tobacco Smoking and Ligaments (n = 4)

Compared to nonsmokers, smokers were found to have significantly poorer outcomes regarding stability [249], Lysholm Knee Score, International Knee Documentation Committee (IKDC) subjective score, and IKDC objective grade [249, 250] after ACL reconstruction. A dose-dependent association was noted between pack-years and postoperative anterior translation (P = 0.015) and IKDC objective grade (P = 0.002) [250]. Tobacco use was associated with a significantly increased risk of postoperative venous thromboembolism (OR = 1.9; P = 0.035) [248] and subsequent ACL reconstruction (OR = 1.7; P < 0.0001) [248]; but it was not found to be significant for postoperative stiffness (OR = 0.9; P = 0.656) [248]. There was no consensus regarding risks of postoperative infection. One study reported tobacco use increased risk infection (OR = 2.3; P < 0.0001) [248], and another study reported smoking was not a significant risk factor (OR=2.5; P = 0.167) [247]. Table 3 provides more details on the 4 cohort studies that enrolled both sexes and investigated effect of smoking on the clinical outcomes and complications after ACL reconstruction.

3.7. Intrauterine and Secondhand Smoking Effect on Musculoskeletal System (n = 8)

These studies were classified into two groups: first group investigated associations between secondhand smoke and musculoskeletal system disorders, and the second investigated the effects of intrauterine exposure by mothers who smoked or mothers exposed to secondhand smoke and the long-term outcomes on the musculoskeletal system of offspring. The first group had two cross-sectional studies that reported subjects exposed to passive secondhand smoking had significantly lower phalangeal BMD (P < 0.01) [253] and higher risk for femoral neck osteoporosis (OR, 3.68; 95%CI: 1.23-10.92) than unexposed subjects [255]. The second group consisted of 6 studies; 3 studies were cohort studies and reported maternal smoking was significantly associated with lower aerobic fitness of male adolescents [252] and lower total body BMC in male adolescents, but not female adolescents [257]. Maternal smoking was not found to be associated with BMD [254, 257] or fractures in adolescents [254]. One prospective cohort and one cross-sectional study reported smoking by both parents during pregnancy had a significant effect on relative leg length (shorter) of offspring at ages 7-10 [258], increased spine BMC, and BMD in girls, but not boys at a mean age of 9.9 years [256]. Finally, one article, a secondary data analysis, reported exposure of nonsmoking pregnant mothers to secondhand smoke from paternal grandmothers was associated with taller girls, and greater bone and lean mass of both sexes at age 17, while exposure of nonsmokers pregnant mothers to secondhand smoking from maternal grandmothers was associated with increased weight of boys at age 17 [251]. Table 3 provides comprehensive details about the 8 studies.

4. Discussion

This systematic review provides evidence of the substantive negative effects of tobacco smoking on the musculoskeletal system. A majority of studies reviewed (132 of 243) focused on the deleterious effect of tobacco smoking on bones, followed by joints (54 of 243), with less emphasis on muscles, cartilage, tendons, and ligaments. At the bone level, there is sufficient evidence demonstrating tobacco smoking is associated with low BMD, an increased likelihood of fracture, delayed fracture healing, increased alveolar bone loss, increased risk of periodontitis, increased peri-implant bone loss, and implant failure. The inverse association for tobacco smoking with BMD was evident in males across ages, in adolescents of both sexes, and in postmenopausal females; however, these associations were not fully explained by biomarkers monitored to understand the mechanisms of smoking effects on bone metabolism. Studies investigating biological mechanisms were few and were limited by a lack of power or a failure to adjust for confounding variables.

The research on periodontitis provided general agreement on clinical outcomes and monitored biomarkers proposed to be affected by tobacco smoking. This may indicate different mechanisms for effects on the alveolar bone than the rest of the body or there may be factors other than smoking that have an isolated effect or interact with the effects of smoking to synergize or diminish the negative effect on human BMD. Our findings regarding the negative outcomes of smoking on bone implants and surrounding tissues were consistent with 5 systematic reviews conducted previously on smoking effects on dental implants [711].

The research on joints was more segregated and investigated the effects of smoking on specific joint disorders rather than whole joints. Most studies were focused on RA (29 of 54). There was consensus that smoking is associated with increased disease activity, functional disability, and poor response to therapy. There was also evidence of an interaction between smoking and HLA-DR beta 1 4-amino acid haplotype and ACPA. This interaction was significantly associated with increased RA disease activity. There was evidence of a negative effect on OA outcomes; however, findings were inconsistent. There was evidence that supported the association between smoking and increased pain in patients with TMD, increased disease activity, pain, and poor response to therapy in patients with spondylarthrosis in a pattern similar to that exhibited by patients with RA.

Studies of smoking effects on skeletal muscles provided clear evidence that smoking was associated with poor outcomes, particularly decreased muscle strength. However, these findings were inconsistent on whether smoking is associated with changes in muscle thickness or maximal voluntary contraction. For the effects of smoking on cartilage, this review provided evidence of a harmful association of smoking and pack-years with knee cartilage (increased in cartilage volume, decreased strain ratio, and poor postoperative outcome), low spinal fusion rate, and increased risk of spinal reoperation. A limited number of studies investigated the effect of smoking on tendons and ligaments. For tendons, the results found smoking and pack-years associated with thinner patellar and Achilles tendons, severe rotator cuff tears, and poor postoperative functional outcomes. The results of this review regarding the effect of smoking on tendons are consistent with the findings reported in a previous systematic review by Bishop et al. [16]. For ligaments, smoking was associated with poor functional and stability scores after ACL reconstruction, consistent with the findings in systematic reviews by Kanneganti et al. [13] and Novikov et al. [14] that reported negative effects of smoking on postoperative outcomes.

This systematic review identified few articles on secondhand (4 studies) or intrauterine exposure to smoke (6 studies). In terms of secondhand smoke, reviewed studies reported varying effects. There was an inverse association between secondhand smoke exposure and phalangeal BMD and a positive association with risk of femoral neck osteoporosis. A positive effect reported was the reduction in OA risk, and no effects were found in relation to response to RA therapy. Studies on intrauterine exposure were focused on long-term effects of exposure on the musculoskeletal outcomes of offspring. There was no consensus in the evidence on the effects of smoking on BMD, BMC, relative leg length, or other body composition parameters in male and female offspring.

This systematic review provided evidence of the negative effects of smoking on the musculoskeletal system. Table 3 provides essential information to be considered in future studies. Definitions of smoking status and intensity of smoking based on self-report were inconsistent across studies. For example, when smoking status was treated as binomial category (smoking versus nonsmoking), one study may have added former smokers to the smoking category, while another may have placed former smokers in the nonsmoking category. Similar observations were noted regarding measurement of smoking intensity; one study may define a heavy smoker as an individual who smoked 10 cigarettes or more a day over the last 10 years, while another study may define a heavy smoker as an individual who smoked 10 or more cigarettes a day over the last 5 years. Such variations in classification may lead to a misinterpretation of overall smoking effects and introduce inconsistencies among reported findings. Objective measurements are considered more reliable assessments of smoking exposure; however, objective measurements were reported in only 12 of 243 studies, 9 of these studies measured level of cotinine, and 3 assessed levels of EXCO. We did not encounter any study in this review that measured nicotine dependence (e.g., the Fagerstrom Test for Nicotine Dependence), so we cannot conclude if there were differences in patterns of effects for use or dependence of tobacco smoking. There were a limited number of studies investigating the effects of secondhand smoke and other smoking modalities, such as hookahs, narghiles, or electronic cigarettes. This review encountered only 4 studies on secondhand smoking with varying effects reported. We also only encountered only 2 studies regarding waterpipe smoking and no studies investigated the effects of smoking electronic cigarettes on the musculoskeletal system.

This systematic review demonstrates the need for further research to understand the effects of smoking on the musculoskeletal system. Due to the limited evidence on muscles, cartilage, tendons, and ligaments, more studies using different research designs are needed. The need for studies using various research designs naturally extends to study the effects of waterpipe, electronic cigarettes, and secondhand smoke on the musculoskeletal system. Longitudinal observational and experimental studies are needed to conclusively understand the effects of smoking on bone and joint-related outcomes.

There are several factors to be considered in the design of future studies. There needs to be a consistent approach to evaluate self-reported exposure for smoking and a more objective assessment for smoking exposure. There is also a need to assess for other smoking products (polycyclic aromatic hydrocarbons, nitrosamines, etc.) rather than to assess only levels of cotinine or EXCO. There need to be more information and analysis of confounders and genetic factors that may interact with smoking effects on the musculoskeletal system. There is also a need for more and frequent monitoring for changes in smoking status in longitudinal studies. Future research should endeavor to examine more than one musculoskeletal component to shed light on the development and differentiation of cell types of the musculoskeletal system. Finally, there is a need for further research to provide insight into how to minimize the effects of smoking in patients who undergo musculoskeletal surgery. Also, we recommend more ancillary studies as part of large longitudinal studies such as Population Assessment of Tobacco and Health (PATH).

Our research had several limitations. First, this review included only English language articles. Second, in vitro studies were not included. Third, we did not search for specific diseases or disorders under the term musculoskeletal system; however, we believe our search was able to comprehensively capture these disorders that are subcategorized under each section in Table 3. Fourth, this review was focused primarily on the effect of tobacco smoking on musculoskeletal system, and due to that the search method in this review may have missed other studies that have smoking as variable. Finally, we did not find any research on electronic cigarettes with only 2 studies on waterpipes. We believe these areas warrant research and will likely attract attention in the future.

5. Conclusion

This systematic review provided clear evidence of the negative effects of smoking on the musculoskeletal system. Evidence found smoking associated with lower BMD, and increased risk for fracture, periodontitis, alveolar bone loss and implant failure, increased joint disease, poor functional outcomes, and poor therapeutic response. We also found evidence of adverse effects on muscles, tendons, cartilage, and ligaments, despite the scarcity of studies. As smoking continues to be an important public health concern, there is a need for further research to understand mechanisms of action for the effects of smoking on the musculoskeletal system and to increase awareness of healthcare providers and community members about the deleterious effects of smoking on the musculoskeletal system.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this article.

Authors’ Contributions

Ahmad M. AL-Bashaireh conducted the literature search, reviewed the articles, and prepared the original draft of the main sections. Ahmad M. AL-Bashaireh and Linda G. Haddad participated in the interpretation and writing the result sections. Michael Weaver and Linda G. Haddad reviewed and edited draft manuscripts and the final manuscript and contributed to manuscript improvement. Debra Lynch Kelly participated in the study design and reviewed and edited all versions of manuscript. Xing Chengguo validated the literature search and assisted in editing the manuscript. Saunjoo Yoon reviewed and edited the final manuscript. All authors approved the final manuscript.

Acknowledgments

The authors would like to acknowledge the staff of the Health Science Center Libraries at University of Florida for their support obtaining full-text articles included in this review.

References

  1. U. D. o. Health and H. Services, “Preventing tobacco use among youth and young adults: A report of the Surgeon General,” in Office on Smoking and Health, vol. 3, National Center for Chronic Disease Prevention and Health Promotion, Atlanta, GA, 2012. View at Google Scholar
  2. G. E. Matt, P. J. E. Quintana, H. Destaillats et al., “Thirdhand tobacco smoke: Emerging evidence and arguments for a multidisciplinary research agenda,” Environmental Health Perspectives, vol. 119, no. 9, pp. 1218–1226, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. S. General, “The health consequences of smoking—50 years of progress: a report of the surgeon general”.
  4. D. C. Schoen, Adult orthopaedic nursing, Lippincott Williams & Wilkins, 2000.
  5. U. D. o. Health and H. Services, “Physical activity and health: A report of the Surgeon General,” 1996, http://www.cdc.gov/nccdphp/sgr/pdf/execsumm.pdf.
  6. L. Miles, “Physical activity and health,” Nutrition Bulletin, vol. 32, no. 4, pp. 314–363, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. B. R. Chrcanovic, T. Albrektsson, and A. Wennerberg, “Smoking and dental implants: a systematic review and meta-analysis,” Journal of Dentistry, vol. 43, no. 5, pp. 487–498, 2015. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Clementini, P. H. O. Rossetti, D. Penarrocha, C. Micarelli, W. C. Bonachela, and L. Canullo, “Systemic risk factors for peri-implant bone loss: A systematic review and meta-analysis,” International Journal of Oral and Maxillofacial Surgery, vol. 43, no. 3, pp. 323–334, 2014. View at Publisher · View at Google Scholar · View at Scopus
  9. L. J. A. Heitz-Mayfield and G. Huynh-Ba, “History of treated periodontitis and smoking as risks for implant therapy,” The International Journal of Oral & Maxillofacial Implants, vol. 24, pp. 39–68, 2009. View at Google Scholar · View at Scopus
  10. P. R. Klokkevold and T. J. Han, “How do smoking, diabetes, and periodontitis affect outcomes of implant treatment?” The International Journal of Oral & Maxillofacial Implants, vol. 22, pp. 173–202, 2007. View at Google Scholar · View at Scopus
  11. V. Moraschini and E. D. P. Barboza, “Success of dental implants in smokers and non-smokers: a systematic review and meta-analysis,” International Journal of Oral and Maxillofacial Surgery, vol. 45, no. 2, pp. 205–215, 2016. View at Publisher · View at Google Scholar · View at Scopus
  12. W. Huang, Y. Qian, K. Zheng, L. Yu, and X. Yu, “Is smoking a risk factor for lumbar disc herniation?” European Spine Journal, vol. 25, no. 1, pp. 168–176, 2016. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Kanneganti, J. D. Harris, R. H. Brophy, J. L. Carey, C. Lattermann, and D. C. Flanigan, “The effect of smoking on ligament and cartilage surgery in the knee: A systematic review,” The American Journal of Sports Medicine, vol. 40, no. 12, pp. 2872–2878, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. D. A. Novikov, S. J. Swensen, J. A. Buza, R. H. Gidumal, and E. J. Strauss, “The effect of smoking on ACL reconstruction: a systematic review,” The Physician and Sportsmedicine, vol. 44, no. 4, pp. 335–341, 2016. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Santiago-Torres, D. C. Flanigan, R. B. Butler, and J. Y. Bishop, “The effect of smoking on rotator cuff and glenoid labrum surgery: A systematic review,” The American Journal of Sports Medicine, vol. 43, no. 3, pp. 745–751, 2015. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Y. Bishop, J. E. Santiago-Torres, N. Rimmke, and D. C. Flanigan, “Smoking predisposes to rotator cuff pathology and shoulder dysfunction: A systematic review,” Arthroscopy - Journal of Arthroscopic and Related Surgery, vol. 31, no. 8, pp. 1598–1605, 2015. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Beyth, R. Mosheiff, O. Safran, A. Daskal, and M. Liebergall, “Cigarette Smoking Is Associated with a Lower Concentration of CD105(+) Bone Marrow Progenitor Cells,” Bone Marrow Research, vol. 2015, pp. 1–6, 2015. View at Publisher · View at Google Scholar
  18. N. H. Bjarnason, T. F. Nielsen, H. L. Jørgensen, and C. Christiansen, “The influence of smoking on bone loss and response to nasal estradiol,” Climacteric, vol. 12, no. 1, pp. 59–65, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. L. P. Breitling, “Smoking as an effect modifier of the association of calcium intake with bone mineral density,” The Journal of Clinical Endocrinology & Metabolism, vol. 100, no. 2, pp. 626–635, 2015. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Callréus, F. McGuigan, and K. Åkesson, “Adverse effects of smoking on peak bone mass may be attenuated by higher body mass index in young female smokers,” Calcified Tissue International, vol. 93, no. 6, pp. 517–525, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Cangussu, J. Nahas-Neto, E. Petri Nahas, A. Rodrigues Barral, D. Buttros, and G. Uemura, “Evaluation of postural balance in postmenopausal women and its relationship with bone mineral density - A cross sectional study,” BMC Musculoskeletal Disorders, vol. 13, 2012. View at Google Scholar · View at Scopus
  22. L. M. D. O. Caram, R. Ferrari, A. L. Bertani et al., “Smoking and early COPD as independent predictors of body composition, exercise capacity, and health status,” PLoS ONE, vol. 11, no. 10, Article ID e0164290, 2016. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Cetin, S. Muhtaroglu, R. Saraymen, A. Ozturk, and I. Muderris, “Smoking-Induced Bone Defects May Be Due to Oxidative Damage in Postmenopausal Women,” Turkiye Klinikleri Tip Bilimleri Dergisi, vol. 29, no. 4, pp. 851–858, 2009. View at Google Scholar
  24. C. G. Chassanidis, K. N. Malizos, S. Varitimidis et al., “Smoking affects mRNA expression of bone morphogenetic proteins in human periosteum,” The Journal of Bone and Joint Surgery—British Volume, vol. 94, no. 10, pp. 1427–1432, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Chen, P. Bai, L. Liu, J. Han, H. Zeng, and Y. Sun, “Increased RANKL expression in peripheral T cells is associated with decreased bone mineral density in patients with COPD,” International Journal of Molecular Medicine, vol. 38, no. 2, pp. 585–593, 2016. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Christie, R. Osborne, S. Kantor, C. Nowson, M. Seibel, and J. Wark, “Mechanisms of bone loss in twins discordant for cigarette smoking,” Bone, vol. 44, p. S103, 2009. View at Publisher · View at Google Scholar
  27. W. U. De Jong, P. A. De Jong, R. Vliegenthart et al., “Association of chronic obstructive pulmonary disease and smoking status with bone density and vertebral fractures in male lung cancer screening participants,” Journal of Bone and Mineral Research, vol. 29, no. 10, pp. 2224–2229, 2014. View at Publisher · View at Google Scholar · View at Scopus
  28. L. D. Dorn, S. J. Beal, H. J. Kalkwarf, S. Pabst, J. G. Noll, and E. J. Susman, “Longitudinal impact of substance use and depressive symptoms on bone accrual among girls aged 11–19 years,” Journal of Adolescent Health, vol. 52, no. 4, pp. 393–399, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. L. D. Dorn, S. Pabst, L. M. Sontag, H. J. Kalkwarf, J. B. Hillman, and E. J. Susman, “Bone mass, depressive, and anxiety symptoms in adolescent girls: Variation by smoking and alcohol use,” Journal of Adolescent Health, vol. 49, no. 5, pp. 498–504, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. L. D. Dorn, E. J. Susman, S. Pabst, B. Huang, H. Kalkwarf, and S. Grimes, “Association of depressive symptoms and anxiety with bone mass and density in ever-smoking and never-smoking adolescent girls,” JAMA Pediatrics, vol. 162, no. 12, pp. 1181–1188, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. N. A. Drage, R. M. Palmer, G. Blake, R. Wilson, F. Crane, and I. Fogelman, “A comparison of bone mineral density in the spine, hip and jaws of edentulous subjects,” Clinical Oral Implants Research, vol. 18, no. 4, pp. 496–500, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. K. I. Eleftheriou, J. S. Rawal, L. E. James et al., “Bone structure and geometry in young men: The influence of smoking, alcohol intake and physical activity,” Bone, vol. 52, no. 1, pp. 17–26, 2013. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Emaus, T. Wilsgaard, and L. A. Ahmed, “Impacts of body mass index, physical activity, and smoking on femoral bone loss: The tromso study,” Journal of Bone and Mineral Research, vol. 29, no. 9, pp. 2080–2089, 2014. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Fujiyoshi, L. E. Polgreen, M. D. Gross, J. P. Reis, S. Sidney, and D. R. Jacobs, “Smoking habits and parathyroid hormone concentrations in young adults: The CARDIA study,” Bone Reports, vol. 5, pp. 104–109, 2016. View at Publisher · View at Google Scholar · View at Scopus
  35. P. F. Giampietro, C. McCarty, B. Mukesh et al., “The role of cigarette smoking and statins in the development of postmenopausal osteoporosis: A pilot study utilizing the marshfield clinic personalized medicine cohort,” Osteoporosis International, vol. 21, no. 3, pp. 467–477, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. N. Ç. Kargin, K. Marakoglu, A. Unlu, L. Kebapcilar, and E. N. Korucu, “Comparison of bone turnover markers between male smoker and non-smoker,” Acta Medica Mediterranea, vol. 32, no. 2, pp. 317–323, 2016. View at Google Scholar · View at Scopus
  37. E. N. Kassi, S. Stavropoulos, P. Kokkoris et al., “Smoking is a significant determinant of low serum vitamin D in young and middle-aged healthy males,” Hormones-International Journal of Endocrinology and Metabolism, vol. 14, no. 2, pp. 241–250, 2015. View at Google Scholar · View at Scopus
  38. L. Kaume, E. E. Gbur, R. DiBrezzo, L. R. Howard, and L. Devareddy, “Antioxidant-rich berries exert modest bone protective effects in postmenopausal smokers without improving biomarkers of bone metabolism,” Journal of Functional Foods, vol. 9, no. 1, pp. 202–210, 2014. View at Publisher · View at Google Scholar · View at Scopus
  39. M.-H. Kim, Y.-S. Chung, and C.-J. Sung, “Negative effects of alcohol consumption and tobacco use on bone formation markers in young Korean adult males,” Nutrition Research, vol. 27, no. 2, pp. 104–108, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. O. N. Klefter, A. Krogh Rasmussen, and U. Feldt-Rasmussen, “P01-50 Smoking, body composition and bone health in adult patients with Growth Hormone (GH)-treated GH deficiency – an observational study,” in Growth Hormone & IGF Research, vol. 22, pp. S49–S50, 2012. View at Google Scholar
  41. A. Kleppinger, M. D. Litt, A. M. Kenny, and C. A. Oncken, “Effects of smoking cessation on body composition in postmenopausal women,” Journal of Women's Health, vol. 19, no. 9, pp. 1651–1657, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. K. W. Kooij, F. W. N. M. Wit, P. H. Bisschop et al., “Low bone mineral density in patients with well-suppressed HIV infection: Association with body weight, smoking, and prior advanced HIV disease,” The Journal of Infectious Diseases, vol. 211, no. 4, pp. 539–548, 2015. View at Publisher · View at Google Scholar · View at Scopus
  43. C.-W. Kuo, T.-H. Chang, W.-L. Chi, and T.-C. Chu, “Effect of Cigarette Smoking on Bone Mineral Density in Healthy Taiwanese Middle-Aged Men,” Journal of Clinical Densitometry, vol. 11, no. 4, pp. 518–524, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Lee, D. H. Yoon, K. N. Kim, D. A. Shin, and Y. Ha, “Association between urine cotinine levels and bone mineral density in lumbar spine and femoral neck among adult males,” The Spine Journal, vol. 39, no. 4, pp. 311–317, 2014. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Liu, X. Sun, X. Zhuang, and J. Liang, “GSTM1 polymorphism modifies the effect of smoking on calcaneal quantitative ultrasound in young men,” Molecular Medicine Reports, vol. 7, no. 2, pp. 509–512, 2013. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Lorentzon, D. Mellström, E. Haug, and C. Ohlsson, “Smoking is associated with lower bone mineral density and reduced cortical thickness in young men,” The Journal of Clinical Endocrinology & Metabolism, vol. 92, no. 2, pp. 497–503, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Lucas, S. Fraga, E. Ramos, and H. Barros, “Early Initiation of Smoking and Alcohol Drinking as a Predictor of Lower Forearm Bone Mineral Density in Late Adolescence: A Cohort Study in Girls,” PLoS ONE, vol. 7, no. 10, Article ID e46940, 2012. View at Publisher · View at Google Scholar · View at Scopus
  48. J.-P. Myong, H.-R. Kim, S. E. Choi, and J.-W. Koo, “Dose-related effect of urinary cotinine levels on bone mineral density among Korean females,” Osteoporosis International, vol. 24, no. 4, pp. 1339–1346, 2013. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Øyen, O. K. Nygard, C. G. Gjesdal et al., “Plasma choline, nicotine exposure, and risk of low bone mineral density and hip fracture: The hordaland health study,” Journal of Bone and Mineral Research, vol. 29, no. 1, pp. 242–250, 2014. View at Publisher · View at Google Scholar · View at Scopus
  50. E. Pompe, J. Bartstra, H. J. Verhaar et al., “Bone density loss on computed tomography at 3-year follow-up in current compared to former male smokers,” European Journal of Radiology, vol. 89, pp. 177–181, 2017. View at Publisher · View at Google Scholar · View at Scopus
  51. O. Rom, A. Z. Reznick, Z. Keidar, K. Karkabi, and D. Aizenbud, “Body Composition in Heavy Smokers: Comparison of Segmental Bioelectrical Impedance Analysis and Dual-Energy X-Ray Absorptiometry,” Advances in Experimental Medicine and Biology, vol. 840, pp. 1–11, 2015. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Rudäng, A. Darelid, M. Nilsson et al., “Smoking is associated with impaired bone mass development in young adult men: A 5-year longitudinal study,” Journal of Bone and Mineral Research, vol. 27, no. 10, pp. 2189–2197, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Sneve, N. Emaus, R. M. Joakimsen, and R. Jorde, “The association between serum parathyroid hormone and bone mineral density, and the impact of smoking: the Tromso Study,” European Journal of Endocrinology, vol. 158, no. 3, pp. 401–409, 2008. View at Publisher · View at Google Scholar
  54. P. Szulc, E. Debiesse, S. Boutroy, N. Vilauphiou, and R. Chapurlat, “Poor trabecular microarchitecture in male current smokers: The cross-sectional STRAMBO study,” Calcified Tissue International, vol. 89, no. 4, pp. 303–311, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Tamaki, M. Iki, Y. Fujita et al., “Impact of smoking on bone mineral density and bone metabolism in elderly men: the Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) study,” Osteoporosis International, vol. 22, no. 1, pp. 133–141, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. J. Tamaki, M. Iki, Y. Sato et al., “Smoking among premenopausal women is associated with increased risk of low bone status: The JPOS Study,” Journal of Bone and Mineral Metabolism, vol. 28, no. 3, pp. 320–327, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. N. D. Clement, E. B. Goudie, A. J. Brooksbank, T. J. S. Chesser, and C. M. Robinson, “Smoking status and the Disabilities of the Arm Shoulder and Hand score are early predictors of symptomatic nonunion of displaced midshaft fractures of the clavicle,” The Bone & Joint Journal, vol. 98B, no. 1, pp. 125–130, 2016. View at Publisher · View at Google Scholar · View at Scopus
  58. A. F. Dinah and R. H. Vickers, “Smoking increases failure rate of operation for established non-union of the scaphoid bone,” International Orthopaedics, vol. 31, no. 4, pp. 503–505, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. F. Du, H. Qiukui, D. Birong et al., “Association of osteoporotic fracture with smoking, alcohol consumption, tea consumption and exercise among Chinese nonagenarians/centenarians,” The Journal of Nutrition, Health & Aging, vol. 15, no. 5, pp. 327–331, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. J. Hernigou and F. Schuind, “Smoking as a predictor of negative outcome in diaphyseal fracture healing,” International Orthopaedics, vol. 37, no. 5, pp. 883–887, 2013. View at Publisher · View at Google Scholar · View at Scopus
  61. L. Jørgensen, R. Joakimsen, L. Ahmed, J. Størmer, and B. K. Jacobsen, “Smoking is a strong risk factor for non-vertebral fractures in women with diabetes: the Tromso Study,” Osteoporosis International, vol. 22, no. 4, pp. 1247–1253, 2011. View at Publisher · View at Google Scholar
  62. H. Jutberger, M. Lorentzon, E. Barrett-Connor et al., “Smoking predicts incident fractures in elderly men: Mr OS Sweden,” Journal of Bone and Mineral Research, vol. 25, no. 5, pp. 1010–1016, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. G. Kaiser, A. Thomas, J. Kottstorfer, M. Kecht, and K. Sarahrudi, “Is the expression of transforming growth factor-Beta1 after fracture of long bones solely influenced by the healing process?” International Orthopaedics, vol. 36, no. 10, pp. 2173–2179, 2012. View at Publisher · View at Google Scholar
  64. K. W. Krannitz, L. M. Fallat, and S. M. Schwartz, “Radiographic Healing of Conservative Versus Operative Management of Supination-External Rotation II Fractures in a Smoking and Premature Weight-bearing Population,” Journal of Foot and Ankle Surgery, vol. 46, no. 4, pp. 218–222, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Moghaddam, S. Weiss, C. G. Wölfl et al., “Cigarette smoking decreases TGF-β1 serum concentrations after long bone fracture,” Injury, vol. 41, no. 10, pp. 1020–1025, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Moghaddam, G. Zimmermann, K. Hammer, T. Bruckner, P. A. Grützner, and J. Von Recum, “Cigarette smoking influences the clinical and occupational outcome of patients with tibial shaft fractures,” Injury, vol. 42, no. 12, pp. 1435–1442, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. J. Øyen, G. F. T. Svingen, C. G. Gjesdal et al., “Plasma dimethylglycine, nicotine exposure and risk of low bone mineral density and hip fracture: the Hordaland Health Study,” Osteoporosis International, vol. 26, no. 5, pp. 1573–1583, 2015. View at Publisher · View at Google Scholar · View at Scopus
  68. A. M. Rodrigues, J. Caetano-Lopes, A. C. Vale et al., “Smoking is a predictor of worse trabecular mechanical performance in hip fragility fracture patients,” Journal of Bone and Mineral Metabolism, vol. 30, no. 6, pp. 692–699, 2012. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Schröter, T. Freude, M. M. A. Kopp et al., “Smoking and unstable hinge fractures cause delayed gap filling irrespective of early weight bearing after open wedge osteotomy,” Arthroscopy, vol. 31, no. 2, pp. 254–265, 2015. View at Publisher · View at Google Scholar · View at Scopus
  70. Y. Taes, B. Lapauw, G. Vanbillemont et al., “Early smoking is associated with peak bone mass and prevalent fractures in young, healthy men,” Journal of Bone and Mineral Research, vol. 25, no. 2, pp. 379–387, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. M. H. Thorin, A. Wihlborg, K. Åkesson, and P. Gerdhem, “Smoking, smoking cessation, and fracture risk in elderly women followed for 10 years,” Osteoporosis International, vol. 27, no. 1, pp. 249–255, 2016. View at Publisher · View at Google Scholar · View at Scopus
  72. T. Wilsgaard, B. K. Jacobsen, L. A. Ahmed, R. M. Joakimsen, J. Størmer, and L. Jørgensen, “BMI change is associated with fracture incidence, but only in non-smokers. The Tromsø Study,” Osteoporosis International, vol. 22, no. 4, pp. 1237–1245, 2011. View at Publisher · View at Google Scholar
  73. J. M. D. Campos, A. J. Prati, F. R. Cirano et al., “Smoking modulates gene expression of type i collagen, bone sialoprotein, and osteocalcin in human alveolar bone,” Journal of Oral and Maxillofacial Surgery, vol. 73, no. 11, pp. 2123–2131, 2015. View at Publisher · View at Google Scholar · View at Scopus
  74. L. Levin and J. Levine, “Cigarette smoking and radiographic alveolar bone height and density,” NYS Dental Journal, vol. 76, no. 6, pp. 31–35, 2010. View at Google Scholar
  75. F. Mesa, N. Souki, P. Galindo-Moreno, M. Velasco-Torres, F. O'Valle, and M. Bravo, “Tobacco consumption induces alveolar crest height loss independently of mandibular bone mass and bone density,” Clinical Oral Implants Research, vol. 25, no. 9, pp. 1034–1040, 2014. View at Publisher · View at Google Scholar · View at Scopus
  76. G. M. Rosa, G. Q. Lucas, and O. N. Lucas, “Cigarette smoking and alveolar bone in young adults: A study using digitized radiographs,” Journal of Periodontology, vol. 79, no. 2, pp. 232–244, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. L. Adler, C. Modin, J. Friskopp, and L. Jansson, “Relationship between smoking and periodontal probing pocket depth profile,” Swedish Dental Journal, vol. 32, no. 4, pp. 157–163, 2008. View at Google Scholar · View at Scopus
  78. R. Al-Habashneh, M. A. Al-Omari, and D. Q. Taani, “Smoking and caries experience in subjects with various form of periodontal diseases from a teaching hospital clinic.,” International Journal of Dental Hygiene, vol. 7, no. 1, pp. 55–61, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. R. Peršić Bukmir, M. Jurčević Grgić, G. Brumini, S. Spalj, S. Pezelj-Ribaric, and I. Brekalo Pršo, “Influence of tobacco smoking on dental periapical condition in a sample of Croatian adults,” Wiener Klinische Wochenschrift, vol. 128, no. 7-8, pp. 260–265, 2016. View at Publisher · View at Google Scholar · View at Scopus
  80. S. Chantarangsu, T. Sura, S. Mongkornkarn, K. Donsakul, and K. Torrungruang, “Vitamin D receptor gene polymorphism and smoking in the risk of chronic periodontitis,” Journal of Periodontology, vol. 87, no. 11, pp. 1343–1351, 2016. View at Publisher · View at Google Scholar · View at Scopus
  81. S. F. Dastoor, S. Travan, R. F. Neiva, L. A. Raybum, W. V. Giannobile, and H.-L. Wang, “Effect of adjunctive systemic azithromycin with periodontal surgery in the treatment of chronic periodontitis in smokers: A pilot study,” Journal of Periodontology, vol. 78, no. 10, pp. 1887–1896, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. G. L. Torres de Heens, U. van der Velden, and B. G. Loos, “Cigarette smoking enhances T cell activation and a Th2 immune response; an aspect of the pathophysiology in periodontal disease,” Cytokine, vol. 47, no. 3, pp. 157–161, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. A. Eder, E. Koegl, S. P. Von Duvillard, H. Sinzinger, and R. Berent, “Influence of cigarette smoking on synthesis of eicosanoids, isoprostanes and lipoxygenase metabolites in apical periodontitis,” Archives of Oral Biolog, vol. 57, no. 8, pp. 1133–1140, 2012. View at Publisher · View at Google Scholar · View at Scopus
  84. K. Edman, K. Öhrn, B. Nordström, A. Holmlund, and D. Hellberg, “Trends over 30 years in the prevalence and severity of alveolar bone loss and the influence of smoking and socio-economic factors - based on epidemiological surveys in Sweden 1983-2013,” International Journal of Dental Hygiene, vol. 13, no. 4, pp. 283–291, 2015. View at Publisher · View at Google Scholar · View at Scopus
  85. G. Eren, H. O. Turkoglu, H. Atmaca, and F. G. Atilla, “Evaluation of GCF MMP-1, MMP-8, TGF-beta 1, PDGF-AB, and VEGF levels in periodontally healthy smokers,” Turkish Journal of Medical Sciences, vol. 45, no. 4, pp. 850–856, 2015. View at Google Scholar
  86. S. Fisher, L. Kells, J.-P. Picard et al., “Progression of periodontal disease in a maintenance population of smokers and non-smokers: A 3-year longitudinal study,” Journal of Periodontology, vol. 79, no. 3, pp. 461–468, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. N. Ghallab and O. Shaker, “Salivary-soluble CD44 levels in smokers and non-smokers with chronic periodontitis: A pilot study,” Journal of Periodontology, vol. 81, no. 5, pp. 710–717, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. Ö. Gürlek, D. F. Lappin, and N. Buduneli, “Effects of smoking on salivary C-telopeptide pyridinoline cross-links of type I collagen and osteocalcin levels,” Archives of Oral Biolog, vol. 54, no. 12, pp. 1099–1104, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. A. M. Heikkinen, R. Pajukanta, J. Pitkäniemi et al., “The effect of smoking on periodontal health of 15- to 16-year-old adolescents,” Journal of Periodontology, vol. 79, no. 11, pp. 2042–2047, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. A. Hugoson and M. Rolandsson, “Periodontal disease in relation to smoking and the use of Swedish snus: Epidemiological studies covering 20 years (1983-2003),” Journal of Clinical Periodontology, vol. 38, no. 9, pp. 809–816, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. F. Javed, A. A. Al-Kheraif, K. Salazar-Lazo et al., “Periodontal inflammatory conditions among smokers and never-smokers with and without type 2 diabetes mellitus,” Journal of Periodontology, vol. 86, no. 7, pp. 839–846, 2015. View at Publisher · View at Google Scholar · View at Scopus
  92. F. Javed, A. A. Al-Kheraif, I. Rahman et al., “Comparison of clinical and radiographic periodontal status between habitual water-pipe smokers and cigarette smokers,” Journal of Periodontology, vol. 87, no. 2, pp. 142–147, 2016. View at Publisher · View at Google Scholar · View at Scopus
  93. F. Javed, A. A. Al-Kheraif, M. D. Al Amri et al., “Periodontal status and whole salivary cytokine profile among smokers and never-smokers with and without prediabetes,” Journal of Periodontology, vol. 86, no. 7, pp. 890–898, 2015. View at Publisher · View at Google Scholar · View at Scopus
  94. S. Khan, T. Khalid, and K. H. Awan, “Chronic periodontitis and smoking: Prevalence and dose-response relationship,” Saudi Medical Journal, vol. 37, no. 8, pp. 889–894, 2016. View at Publisher · View at Google Scholar · View at Scopus
  95. M. Khemiss, M. B. Khelifa, M. Ben Rejeb, and H. B. Saad, “Periodontal bone height of exclusive narghile smokers compared with exclusive cigarette smokers,” Libyan Journal of Medicine, vol. 11, Article ID 31689, 2016. View at Publisher · View at Google Scholar · View at Scopus
  96. M. Kibayashi, M. Tanaka, N. Nishida et al., “Longitudinal study of the association between smoking as a periodontitis risk and salivary biomarkers related to periodontitis,” Journal of Periodontology, vol. 78, no. 5, pp. 859–867, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. E. Kiss, L. Sewon, I. Gorzó, and K. Nagy, “Salivary calcium concentration in relation to periodontal health of female tobacco smokers: A pilot study,” Quintessence International, vol. 41, no. 9, pp. 779–785, 2010. View at Google Scholar · View at Scopus
  98. M. A. Koss, C. E. Castro, A. M. Gramajo, and M. E. López, “sIgA, peroxidase and collagenase in saliva of smokers aggressive periodontal patients,” Journal of Oral Biology and Craniofacial Research, vol. 6, pp. S24–S28, 2016. View at Publisher · View at Google Scholar · View at Scopus
  99. D. F. Lappin, S. Sherrabeh, W. M. M. Jenkins, and L. M. D. Macpherson, “Effect of smoking on serum RANKL and OPG in sex, age and clinically matched supportive-therapy periodontitis patients,” Journal of Clinical Periodontology, vol. 34, no. 4, pp. 271–277, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. I. Needleman, J. Suvan, M. S. Gilthorpe et al., “A randomized-controlled trial of low-dose doxycycline for periodontitis in smokers,” Journal of Clinical Periodontology, vol. 34, no. 4, pp. 325–333, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. C. J. Nile, S. Sherrabeh, G. Ramage, and D. F. Lappin, “Comparison of circulating tumour necrosis factor superfamily cytokines in periodontitis patients undergoing supportive therapy: A case-controlled cross-sectional study comparing smokers and non-smokers in health and disease,” Journal of Clinical Periodontology, vol. 40, no. 9, pp. 875–882, 2013. View at Publisher · View at Google Scholar · View at Scopus
  102. Ö. Özçaka, A. Nalbantsoy, and N. Buduneli, “Salivary osteocalcin levels are decreased in smoker chronic periodontitis patients,” Oral Diseases, vol. 17, no. 2, pp. 200–205, 2011. View at Publisher · View at Google Scholar · View at Scopus
  103. Ö. Özçaka, A. Nalbantsoy, T. Köse, and N. Buduneli, “Plasma osteoprotegerin levels are decreased in smoker chronic periodontitis patients,” Australian Dental Journal, vol. 55, no. 4, pp. 405–410, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. N. S. Rao, A. R. Pradeep, P. Bajaj, M. Kumari, and S. B. Naik, “Simvastatin local drug delivery in smokers with chronic periodontitis: A randomized controlled clinical trial,” Australian Dental Journal, vol. 58, no. 2, pp. 156–162, 2013. View at Publisher · View at Google Scholar · View at Scopus
  105. E. F. Rosa, P. Corraini, G. Inoue et al., “Effect of smoking cessation on non-surgical periodontal therapy: Results after 24 months,” Journal of Clinical Periodontology, vol. 41, no. 12, pp. 1145–1153, 2014. View at Publisher · View at Google Scholar · View at Scopus
  106. J. Shiloah, P. S. Bland, M. Scarbecz, M. R. Patters, S. H. Stein, and D. A. Tipton, “The effect of long-term aspirin intake on the outcome of non-surgical periodontal therapy in smokers: A double-blind, randomized pilot study,” Journal of Periodontal Research, vol. 49, no. 1, pp. 102–109, 2014. View at Publisher · View at Google Scholar · View at Scopus
  107. T. H. Tang, T. R. Fitzsimmons, and P. M. Bartold, “Effect of smoking on concentrations of receptor activator of nuclear factor κ B ligand and osteoprotegerin in human gingival crevicular fluid,” Journal of Clinical Periodontology, vol. 36, no. 9, pp. 713–718, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. K. Torrungruang, V. Gongsakdi, L. Laohaviraphab, K. Likittanasombat, and W. Ratanachaiwong, “Association between cigarette smoking and the intraoral distribution of periodontal disease in Thai men over 50 years of age.,” Journal of Investigative and Clinical Dentistry, vol. 3, no. 2, pp. 135–141, 2012. View at Publisher · View at Google Scholar · View at Scopus
  109. C. P. Wan, W. K. Leung, M. C. M. Wong et al., “Effects of smoking on healing response to non-surgical periodontal therapy: A multilevel modelling analysis,” Journal of Clinical Periodontology, vol. 36, no. 3, pp. 229–239, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. K.-Y. Zee, P. S. Chan, J. C. S. Ho, S. M. L. Lai, E. F. Corbet, and W. K. Leung, “Adjunctive use of modified Yunu-Jian in the non-surgical treatment of male smokers with chronic periodontitis: A randomized double-blind, placebo-controlled clinical trial,” Chinese Medicine, vol. 11, no. 1, 2016. View at Google Scholar · View at Scopus
  111. M. Aglietta, V. I. Siciliano, G. Rasperini, C. Cafiero, N. P. Lang, and G. E. Salvi, “A 10-year retrospective analysis of marginal bone-level changes around implants in periodontally healthy and periodontally compromised tobacco smokers,” Clinical Oral Implants Research, vol. 22, no. 1, pp. 47–53, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. R. Anner, Y. Grossmann, Y. Anner, and L. Levin, “Smoking, diabetes mellitus, periodontitis, and supportive periodontal treatment as factors associated with dental implant survival: A long-term retrospective evaluation of patients followed for up to 10 years,” Implant Dentistry, vol. 19, no. 1, pp. 57–64, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. J. Ata-Ali, A. J. Flichy-Fernández, T. Alegre-Domingo, F. Ata-Ali, and M. Peñarrocha-Diago, “Impact of heavy smoking on the clinical, microbiological and immunological parameters of patients with dental implants: a prospective cross-sectional study,” Journal of Investigative and Clinical Dentistry, vol. 7, no. 4, pp. 401–409, 2016. View at Publisher · View at Google Scholar · View at Scopus
  114. A. A. Balshe, M. E. Eckert, S. Koka, D. A. Assad, and A. L. Weaver, “The effects of smoking on the survival of smooth- and rough-surface dental implants,” The International Journal of Oral & Maxillofacial Implants, vol. 23, no. 6, pp. 1117–1122, 2008. View at Google Scholar · View at Scopus
  115. S. Cakarer, F. Selvi, T. Can et al., “Investigation of the risk factors associated with the survival rate of dental implants,” Implant Dentistry, vol. 23, no. 3, pp. 328–333, 2014. View at Publisher · View at Google Scholar · View at Scopus
  116. D. Cecchinato, D. Lops, G. E. Salvi, and M. Sanz, “A prospective, randomized, controlled study using OsseoSpeed™ implants placed in maxillary fresh extraction socket: Soft tissues response,” Clinical Oral Implants Research, vol. 26, no. 1, pp. 20–27, 2015. View at Publisher · View at Google Scholar · View at Scopus
  117. S. d'Avila, L. D. dos Reis, A. Piattelli et al., “Impact of smoking on human bone apposition at different dental implant surfaces: a histologic study in type IV bone.,” Journal of Oral Implantology, vol. 36, no. 2, pp. 85–90, 2010. View at Publisher · View at Google Scholar · View at Scopus
  118. J. D'haese and H. De Bruyn, “Effect of smoking habits on accuracy of implant placement using mucosally supported stereolithographic surgical guides,” Clinical Implant Dentistry and Related Research, vol. 15, no. 3, pp. 402–411, 2013. View at Publisher · View at Google Scholar · View at Scopus
  119. J. D’haese, S. Vervaeke, N. Verbanck, and H. De Bruyn, “Clinical and radiographic outcome of implants placed using stereolithographic guided surgery: A prospective monocenter study,” The International Journal of Oral & Maxillofacial Implants, vol. 28, no. 1, pp. 205–215, 2013. View at Publisher · View at Google Scholar · View at Scopus
  120. J. D. Bezerra Ferreira, J. A. Rodrigues, A. Piattelli, G. Iezzi, S. A. Gehrke, and J. A. Shibli, “The effect of cigarette smoking on early osseointegration of dental implants: a prospective controlled study,” Clinical Oral Implants Research, vol. 27, no. 9, pp. 1123–1128, 2016. View at Publisher · View at Google Scholar · View at Scopus
  121. C. García-Delaney, M.-Á. Sánchez-Garcés, R. Figueiredo, A. Sánchez-Torres, and C. Gay-Escoda, “Clinical significance of interleukin-1 genotype in smoking patients as a predictor of peri-implantitis: A case-control study,” Medicina Oral Patología Oral y Cirugía Bucal, vol. 20, no. 6, pp. e737–e743, 2015. View at Publisher · View at Google Scholar · View at Scopus
  122. F. Javed, T. Abduljabbar, G. Carranza et al., “Efficacy of periimplant mechanical debridement with and without adjunct antimicrobial photodynamic therapy in the treatment of periimplant diseases among cigarette smokers and non-smokers,” Photodiagnosis and Photodynamic Therapy, vol. 16, pp. 85–89, 2016. View at Publisher · View at Google Scholar · View at Scopus
  123. L. Levin, R. Hertzberg, S. Har-Nes, and D. Schwartz-Arad, “Long-term marginal bone loss around single dental implants affected by current and past smoking habits,” Implant Dentistry, vol. 17, no. 4, pp. 422–429, 2008. View at Publisher · View at Google Scholar · View at Scopus
  124. T. H. S. Lin, L. Chen, J. Cha et al., “The effect of cigarette smoking and native bone height on dental implants placed immediately in sinuses grafted by hydraulic condensation,” International Journal of Periodontics and Restorative Dentistry, vol. 32, no. 3, pp. 255–261, 2012. View at Google Scholar · View at Scopus
  125. P. Maló, M. de Araújo Nobre, Y. Gonçalves, and A. Lopes, “Long-Term Outcome of Implant Rehabilitations in Patients with Systemic Disorders and Smoking Habits: A Retrospective Clinical Study,” Clinical Implant Dentistry and Related Research, vol. 18, no. 4, pp. 649–665, 2016. View at Publisher · View at Google Scholar · View at Scopus
  126. B. M. Negri, S. P. Pimentel, M. Z. Casati, F. R. Cirano, R. C. Casarin, and F. V. Ribeiro, “Impact of a chronic smoking habit on the osteo-immunoinflammatory mediators in the peri-implant fluid of clinically healthy dental implants,” Archives of Oral Biolog, vol. 70, pp. 55–61, 2016. View at Publisher · View at Google Scholar · View at Scopus
  127. A. Quaranta, B. Assenza, O. D'Isidoro, F. Profili, A. Polimeni, and I. Vozza, “The impact of smoking and previous periodontal disease on peri-implant microbiota and health: a retrospective study up to 7-year follow-up,” Annali Di Stomatologia, vol. 6, no. 1, pp. 21–28, 2015. View at Google Scholar
  128. S. Raes, A. Rocci, F. Raes, L. Cooper, H. De Bruyn, and J. Cosyn, “A prospective cohort study on the impact of smoking on soft tissue alterations around single implants,” Clinical Oral Implants Research, vol. 26, no. 9, pp. 1086–1090, 2015. View at Publisher · View at Google Scholar · View at Scopus
  129. O. F. Rodriguez-Argueta, R. Figueiredo, E. Valmaseda-Castellon, and C. Gay-Escoda, “Postoperative complications in smoking patients treated with implants: A retrospective study,” Journal of Oral and Maxillofacial Surgery, vol. 69, no. 8, pp. 2152–2157, 2011. View at Publisher · View at Google Scholar · View at Scopus
  130. G. E. Romanos, K. Gaertner, E. Aydin, and G.-H. Nentwig, “Long-term results after immediate loading of platform-switched implants in smokers versus nonsmokers with full-arch restorations,” The International Journal of Oral & Maxillofacial Implants, vol. 28, no. 3, pp. 841–845, 2013. View at Publisher · View at Google Scholar · View at Scopus
  131. G. E. Romanos and G.-H. Nentwig, “Immediate loading using cross-arch fixed restorations in heavy smokers: Nine consecutive case reports for edentulous arches,” The International Journal of Oral & Maxillofacial Implants, vol. 23, no. 3, pp. 513–519, 2008. View at Google Scholar · View at Scopus
  132. S. Sayardoust, K. Gröndahl, E. Johansson, P. Thomsen, and C. Slotte, “Implant survival and marginal bone loss at turned and oxidized implants in periodontitis-susceptible smokers and never-smokers: A retrospective, clinical, radiographic case-control study,” Journal of Periodontology, vol. 84, no. 12, pp. 1775–1782, 2013. View at Publisher · View at Google Scholar · View at Scopus
  133. J. A. Shibli, A. Piattelli, G. Iezzi et al., “Effect of smoking on early bone healing around oxidized surfaces: a prospective, controlled study in human jaws,” Journal of Periodontology, vol. 81, no. 4, pp. 575–583, 2010. View at Publisher · View at Google Scholar · View at Scopus
  134. G. Stoker, R. van Waas, and D. Wismeijer, “Long-term outcomes of three types of implant-supported mandibular overdentures in smokers,” Clinical Oral Implants Research, vol. 23, no. 8, pp. 925–929, 2012. View at Publisher · View at Google Scholar · View at Scopus
  135. C. Sun, J. Zhao, C. Jianghao, and T. Hong, “Effect of heavy smoking on dental implants placed in male patients posterior mandibles: A prospective clinical study,” Journal of Oral Implantology, vol. 42, no. 6, pp. 477–483, 2016. View at Publisher · View at Google Scholar · View at Scopus
  136. A. T. Sverzut, G. A. V. Stabile, M. de Moraes, R. Mazzonetto, and R. W. F. Moreira, “The Influence of Tobacco on Early Dental Implant Failure,” Journal of Oral and Maxillofacial Surgery, vol. 66, no. 5, pp. 1004–1009, 2008. View at Publisher · View at Google Scholar · View at Scopus
  137. U. Tatli, I. Damlar, Ö. Erdoǧan, and E. Esen, “Effects of smoking on periimplant health status and il-1β, tnf-α, and pge2 levels in periimplant crevicular fluid: A cross-sectional study on well-maintained implant recall patients,” Implant Dentistry, vol. 22, no. 5, pp. 519–524, 2013. View at Publisher · View at Google Scholar · View at Scopus
  138. G. Thalji, L. F. Cooper, and S. Nares, “Gene expression profiles of early implant adherent cells in smokers and nonsmokers,” Journal of Oral Implantology, vol. 41, no. 6, pp. 640–645, 2015. View at Publisher · View at Google Scholar · View at Scopus
  139. D. Twito and P. Sade, “The effect of cigarette smoking habits on the outcome of dental implant treatment,” PeerJ, vol. 2014, no. 1, 2014. View at Google Scholar · View at Scopus
  140. A. Vacharaksa, M. Kuptanon, R. Sripitiroj, and P. Serichetaphongse, “Periimplant bacteria associated with different transmucosal designs or smoking habits,” Implant Dentistry, vol. 24, no. 2, pp. 166–173, 2015. View at Publisher · View at Google Scholar · View at Scopus
  141. S. Vandeweghe and H. De Bruyn, “The effect of smoking on early bone remodeling on surface modified Southern Implants®,” Clinical Implant Dentistry and Related Research, vol. 13, no. 3, pp. 206–214, 2011. View at Publisher · View at Google Scholar · View at Scopus
  142. S. Vervaeke, B. Collaert, S. Vandeweghe, J. Cosyn, E. Deschepper, and H. De Bruyn, “The effect of smoking on survival and bone loss of implants with a fluoride-modified surface: a 2-year retrospective analysis of 1106 implants placed in daily practice,” Clinical Oral Implants Research, vol. 23, no. 6, pp. 758–766, 2012. View at Publisher · View at Google Scholar · View at Scopus
  143. P. P. Costa, L. B. Alves, S. L. S. de Souza et al., “Root coverage in smokers with acellular dermal matrix graft and enamel matrix derivative: A 12-month randomized clinical trial,” International Journal of Periodontics and Restorative Dentistry, vol. 36, no. 4, pp. 524–531, 2016. View at Publisher · View at Google Scholar · View at Scopus
  144. L. T. Lindfors, E. A. T. Tervonen, G. K. B. Sndor, and L. P. Ylikontiola, “Guided bone regeneration using a titanium-reinforced ePTFE membrane and particulate autogenous bone: The effect of smoking and membrane exposure,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, vol. 109, no. 6, pp. 825–830, 2010. View at Publisher · View at Google Scholar · View at Scopus
  145. E. Nyström, H. Nilson, J. Gunne, and S. Lundgren, “A 9-14 year follow-up of onlay bone grafting in the atrophic maxilla,” International Journal of Oral and Maxillofacial Surgery, vol. 38, no. 2, pp. 111–116, 2009. View at Publisher · View at Google Scholar · View at Scopus
  146. E. Nyström, H. Nilson, J. Gunne, and S. Lundgren, “Reconstruction of the atrophic maxilla with interpositional bone grafting/Le Fort I osteotomy and endosteal implants: A 11-16 year follow-up,” International Journal of Oral and Maxillofacial Surgery, vol. 38, no. 1, pp. 1–6, 2009. View at Publisher · View at Google Scholar · View at Scopus
  147. S. Yilmaz, G. Cakar, S. D. Ipci, B. Kuru, and B. Yildirim, “Regenerative treatment with platelet-rich plasma combined with a bovine-derived xenograft in smokers and non-smokers: 12-month clinical and radiographic results,” Journal of Clinical Periodontology, vol. 37, no. 1, pp. 80–87, 2010. View at Publisher · View at Google Scholar · View at Scopus
  148. A. Abhishek, S. Butt, K. Gadsby, W. Zhang, and C. M. Deighton, “Anti-TNF-α agents are less effective for the treatment of rheumatoid arthritis in current smokers,” JCR: Journal of Clinical Rheumatology, vol. 16, no. 1, pp. 15–18, 2010. View at Publisher · View at Google Scholar · View at Scopus
  149. H. I. Afridi, T. G. Kazi, D. Brabazon, and S. Naher, “Association between essential trace and toxic elements in scalp hair samples of smokers rheumatoid arthritis subjects,” Science of the Total Environment, vol. 412-413, pp. 93–100, 2011. View at Publisher · View at Google Scholar · View at Scopus
  150. H. I. Afridi, F. N. Talpur, T. G. Kazi, and D. Brabazon, “Estimation of toxic elements in the samples of different cigarettes and their effect on the essential elemental status in the biological samples of Irish smoker rheumatoid arthritis consumers,” Environmental Modeling & Assessment, vol. 187, no. 4, pp. 1–16, 2015. View at Publisher · View at Google Scholar · View at Scopus
  151. Y. Chen, P. T. Dawes, and D. L. Mattey, “Polymorphism in the vascular endothelial growth factor A (VEGFA) gene is associated with serum VEGF-A level and disease activity in rheumatoid arthritis: Differential effect of cigarette smoking,” Cytokine, vol. 58, no. 3, pp. 390–397, 2012. View at Publisher · View at Google Scholar · View at Scopus
  152. A. Finckh, S. Dehler, K. H. Costenbader, and C. Gabay, “Cigarette smoking and radiographic progression in rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 66, no. 8, pp. 1066–1071, 2007. View at Publisher · View at Google Scholar · View at Scopus
  153. B. A. Fisher, S.-Y. Bang, M. Chowdhury et al., “Smoking, the HLA-DRB1 shared epitope and ACPA fine-specificity in Koreans with rheumatoid arthritis: Evidence for more than one pathogenic pathway linking smoking to disease,” Annals of the Rheumatic Diseases, vol. 73, no. 4, pp. 741–747, 2014. View at Publisher · View at Google Scholar · View at Scopus
  154. Y. Inoue, A. Nakajima, E. Tanaka et al., “Effect of smoking on remission proportions differs between male and female patients with rheumatoid arthritis: A study based on the IORRA survey,” The Journal of Rheumatology, vol. 42, no. 7, pp. 1083–1089, 2015. View at Publisher · View at Google Scholar · View at Scopus
  155. K. Kim, X. Jiang, J. Cui et al., “Interactions between amino acid-defined major histocompatibility complex class II variants and smoking in seropositive rheumatoid arthritis,” Arthritis & Rheumatology, vol. 67, no. 10, pp. 2611–2623, 2015. View at Publisher · View at Google Scholar
  156. M. Kristiansen, M. Frisch, H. O. Madsen, P. Garred, and S. Jacobsen, “Smoking and polymorphisms of genes encoding mannose-binding lectin and surfactant protein-D in patients with rheumatoid arthritis,” Rheumatology International, vol. 34, no. 3, pp. 373–380, 2014. View at Publisher · View at Google Scholar · View at Scopus
  157. A. Krol, P. Garred, N. H. H. Heegaard et al., “Interactions between smoking, increased serum levels of anti-CCP antibodies, rheumatoid factors, and erosive joint disease in patients with early, untreated rheumatoid arthritis,” Scandinavian Journal of Rheumatology, vol. 44, no. 1, pp. 8–12, 2015. View at Publisher · View at Google Scholar · View at Scopus
  158. B. Lu, Y. H. Rho, J. Cui et al., “Associations of smoking and alcohol consumption with disease activity and functional status in rheumatoid arthritis,” The Journal of Rheumatology, vol. 41, no. 1, pp. 24–30, 2014. View at Publisher · View at Google Scholar · View at Scopus
  159. L. B. Maska, H. R. Sayles, J. R. O'Dell et al., “Serum cotinine as a biomarker of tobacco exposure and the association with treatment response in early rheumatoid arthritis,” Arthritis Care & Research, vol. 64, no. 12, pp. 1804–1810, 2012. View at Publisher · View at Google Scholar · View at Scopus
  160. D. L. Mattey, A. Brownfield, and P. T. Dawes, “Relationship between pack-year history of smoking and response to tumor necrosis factor antagonists in patients with rheumatoid arthritis,” The Journal of Rheumatology, vol. 36, no. 6, pp. 1180–1187, 2009. View at Publisher · View at Google Scholar · View at Scopus
  161. A. Naranjo, S. Toloza, I. Guimaraes Da Silveira et al., “Smokers and non-smokers with rheumatoid arthritis have similar clinical status: Data from the multinational QUEST-RA database,” Clinical and Experimental Rheumatology, vol. 28, no. 6, pp. 820–827, 2010. View at Google Scholar · View at Scopus
  162. B.-M. Nyhäll-Wåhlin, I. F. Petersson, J.-Å. Nilsson et al., “High disease activity disability burden and smoking predict severe extra-articular manifestations in early rheumatoid arthritis,” Rheumatology, vol. 48, no. 4, pp. 416–420, 2009. View at Publisher · View at Google Scholar · View at Scopus
  163. J. Rojas-Serrano, L. L. Pérez, C. G. García et al., “Current smoking status is associated to a non-ACR 50 response in early rheumatoid arthritis. A cohort study,” Clinical Rheumatology, vol. 30, no. 12, pp. 1589–1593, 2011. View at Publisher · View at Google Scholar · View at Scopus
  164. K. Roos, K. Martinsson, M. Ziegelasch et al., “Circulating secretory IgA antibodies against cyclic citrullinated peptides in early rheumatoid arthritis associate with inflammatory activity and smoking,” Arthritis Research & Therapy, vol. 18, no. 1, article no. 119, 2016. View at Publisher · View at Google Scholar · View at Scopus
  165. V. Ruiz-Esquide, J. A. Gómez-Puerta, J. D. Cañete et al., “Effects of smoking on disease activity and radiographic progression in early rheumatoid arthritis,” The Journal of Rheumatology, vol. 38, no. 12, pp. 2536–2539, 2011. View at Publisher · View at Google Scholar · View at Scopus
  166. S. Saevarsdottir, S. Wedrén, M. Seddighzadeh et al., “Patients with early rheumatoid arthritis who smoke are less likely to respond to treatment with methotrexate and tumor necrosis factor inhibitors: observations from the epidemiological investigation of rheumatoid arthritis and the Swedish rheumatology register cohorts,” Arthritis & Rheumatology, vol. 63, no. 1, pp. 26–36, 2011. View at Publisher · View at Google Scholar · View at Scopus
  167. M. J. Haye Salinas, S. Retamozo, A. C. Alvarez et al., “Effects of cigarette smoking on early arthritis: a cross-sectional study—data from the Argentine Consortium for Early Arthritis (CONAART),” Rheumatology International, vol. 35, no. 5, pp. 855–859, 2015. View at Publisher · View at Google Scholar · View at Scopus
  168. M. K. Soderlin, M. Andersson, S. Bergman, and B. S. Grp, “Second-hand exposure to tobacco smoke and its effect on disease activity in Swedish rheumatoid arthritis patients. Data from BARFOT, a multicentre study of rheumatoid arthritis,” Clinical and Experimental Rheumatology, vol. 31, no. 1, pp. 122–124, 2013. View at Google Scholar
  169. M. K. Söderlin, I. F. Petersson, S. Bergman, and B. Svensson, “Smoking at onset of rheumatoid arthritis (RA) and its effect on disease activity and functional status: Experiences from BARFOT, a long-term observational study on early RA,” Scandinavian Journal of Rheumatology, vol. 40, no. 4, pp. 249–255, 2011. View at Publisher · View at Google Scholar · View at Scopus
  170. M. K. Söderlin and S. Bergman, “Absent “window of opportunity” in smokers with short disease duration. Data from BARFOT, a multicenter study of early rheumatoid arthritis,” The Journal of Rheumatology, vol. 38, no. 10, pp. 2160–2168, 2011. View at Publisher · View at Google Scholar · View at Scopus
  171. M. K. Söderlin, I. F. Petersson, and P. Geborek, “The effect of smoking on response and drug survival in rheumatoid arthritis patients treated with their first anti-TNF drug,” Scandinavian Journal of Rheumatology, vol. 41, no. 1, pp. 1–9, 2012. View at Publisher · View at Google Scholar · View at Scopus
  172. J. A. Sparks, S.-C. Chang, K. D. Deane et al., “Associations of Smoking and Age With Inflammatory Joint Signs Among Unaffected First-Degree Relatives of Rheumatoid Arthritis Patients,” Arthritis & Rheumatology, vol. 68, no. 8, pp. 1828–1838, 2016. View at Publisher · View at Google Scholar · View at Scopus
  173. A. Stavropoulos-Kalinoglou, G. S. Metsios, V. F. Panoulas et al., “Cigarette smoking associates with body weight and muscle mass of patients with rheumatoid arthritis: A cross-sectional, observational study,” Arthritis Research & Therapy, vol. 10, no. 3, article no. R59, 2008. View at Publisher · View at Google Scholar · View at Scopus
  174. B. Svensson, I. Hafström, M. C. Erlandsson, K. Forslind, and M. I. Bokarewa, “Smoking in combination with antibodies to cyclic citrullinated peptides is associated with persistently high levels of survivin in early rheumatoid arthritis: A prospective cohort study,” Arthritis Research & Therapy, vol. 16, no. 1, article no. R12, 2014. View at Publisher · View at Google Scholar · View at Scopus
  175. V. Vesperini, C. Lukas, B. Fautrel, X. Le Loet, N. Rincheval, and B. Combe, “Association of tobacco exposure and reduction of radiographic progression in early rheumatoid arthritis: results from a French multicenter cohort,” Arthritis Care & Research, vol. 65, no. 12, pp. 1899–1906, 2013. View at Publisher · View at Google Scholar · View at Scopus
  176. G. Westhoff, R. Rau, and A. Zink, “Rheumatoid arthritis patients who smoke have a higher need for DMARDs and feel worse, but they do not have more joint damage than non-smokers of the same serological group,” Rheumatology, vol. 47, no. 6, pp. 849–854, 2008. View at Publisher · View at Google Scholar · View at Scopus
  177. S. Amin, J. Niu, A. Guermazi et al., “Cigarette smoking and the risk for cartilage loss and knee pain in men with knee osteoarthritis,” Annals of the Rheumatic Diseases, vol. 66, no. 1, pp. 18–22, 2007. View at Publisher · View at Google Scholar · View at Scopus
  178. C. E. Dubé, S.-H. Liu, J. B. Driban, T. E. McAlindon, C. B. Eaton, and K. L. Lapane, “The relationship between smoking and knee osteoarthritis in the Osteoarthritis Initiative,” Osteoarthritis and Cartilage, vol. 24, no. 3, pp. 465–472, 2016. View at Publisher · View at Google Scholar · View at Scopus
  179. K. R. Duchman, Y. Gao, A. J. Pugely, C. T. Martin, N. O. Noiseux, and J. J. Callaghan, “The effect of smoking on short-term complications following total hip and knee arthroplasty,” Journal of Bone and Joint Surgery - American Volume, vol. 97, no. 13, pp. 1049–1058, 2014. View at Publisher · View at Google Scholar · View at Scopus
  180. S. Floerkemeier, A. E. Staubli, S. Schroeter, S. Goldhahn, and P. Lobenhoffer, “Does obesity and nicotine abuse influence the outcome and complication rate after open-wedge high tibial osteotomy? A retrospective evaluation of five hundred and thirty three patients,” International Orthopaedics, vol. 38, no. 1, pp. 55–60, 2014. View at Publisher · View at Google Scholar · View at Scopus
  181. M. B. Johnsen, G. Å. Vie, B. S. Winsvold et al., “The causal role of smoking on the risk of hip or knee replacement due to primary osteoarthritis: a Mendelian randomisation analysis of the HUNT study,” Osteoarthritis and Cartilage, vol. 25, no. 6, pp. 817–823, 2017. View at Publisher · View at Google Scholar · View at Scopus
  182. L. Kalichman and E. Kobyliansky, “Hand osteoarthritis in Chuvashian population: prevalence and determinants,” Rheumatology International, vol. 30, no. 1, pp. 85–92, 2009. View at Publisher · View at Google Scholar · View at Scopus
  183. K. Kang, J.-S. Shin, J. Lee et al., “Association between direct and indirect smoking and osteoarthritis prevalence in koreans: A Cross-sectional study,” BMJ Open, vol. 6, no. 2, Article ID e010062, 2016. View at Publisher · View at Google Scholar · View at Scopus
  184. A. Lampley, C. E. Gross, C. L. Green et al., “Association of Cigarette Use and Complication Rates and Outcomes Following Total Ankle Arthroplasty,” Foot & Ankle International, vol. 37, no. 10, pp. 1052–1059, 2016. View at Publisher · View at Google Scholar · View at Scopus
  185. A. V. Lombardi Jr., K. R. Berend, J. B. Adams, R. C. Jefferson, and M. A. Sneller, ““Smoking may be a harbinger of early failure with ultraporous metal acetabular reconstruction,” Clinical Orthopaedics and Related Research, vol. 471, no. 2, pp. 486–497, 2013. View at Publisher · View at Google Scholar · View at Scopus
  186. G. Mnatzaganian, P. Ryan, P. E. Norman, D. C. Davidson, and J. E. Hiller, “Smoking, body weight, physical exercise, and risk of lower limb total joint replacement in a population-based cohort of men,” Arthritis & Rheumatology, vol. 63, no. 8, pp. 2523–2530, 2011. View at Publisher · View at Google Scholar · View at Scopus
  187. G. Mnatzaganian, P. Ryan, C. M. Reid, D. C. Davidson, and J. E. Hiller, “Smoking and primary total hip or knee replacement due to osteoarthritis in 54,288 elderly men and women,” BMC Musculoskeletal Disorders, vol. 14, article no. 262, 2013. View at Publisher · View at Google Scholar · View at Scopus
  188. J. Niu, T. Neogi, M. Nevitt et al., “Effect of smoking on radiographic knee osteoarthritis and cartilage damage: the Multicenter Osteoarthritis (MOST) Study,” Osteoarthritis and Cartilage, vol. 23, pp. A53–A54, 2015. View at Publisher · View at Google Scholar
  189. A. W-Dahl and S. Toksvig-Larsen, “No delayed bone healing in Swedish male oral snuffers operated on by the hemicallotasis technique: A cohort study of 175 patients,” Acta Orthopaedica, vol. 78, no. 6, pp. 791–794, 2007. View at Publisher · View at Google Scholar · View at Scopus
  190. Y. Zhang, C. Zeng, H. Li et al., “Relationship between cigarette smoking and radiographic knee osteoarthritis in Chinese population: a cross-sectional study,” Rheumatology International, vol. 35, no. 7, pp. 1211–1217, 2015. View at Publisher · View at Google Scholar · View at Scopus
  191. H. Y. Chung, P. Machado, D. Van Der Heijde, M.-A. D'Agostino, and M. Dougados, “Smokers in early axial spondyloarthritis have earlier disease onset, more disease activity, inflammation and damage, and poorer function and health-related quality of life: Results from the DESIR cohort,” Annals of the Rheumatic Diseases, vol. 71, no. 6, pp. 809–816, 2012. View at Publisher · View at Google Scholar · View at Scopus
  192. D. L. Mattey, S. R. Dawson, E. L. Healey, and J. C. Packham, “Relationship between smoking and patient-reported measures of disease outcome in ankylosing spondylitis,” The Journal of Rheumatology, vol. 38, no. 12, pp. 2608–2615, 2011. View at Publisher · View at Google Scholar · View at Scopus
  193. H. L. Munk, N. S. Gudmann, A. F. Christensen et al., “Cartilage collagen type II seromarker patterns in axial spondyloarthritis and psoriatic arthritis: associations with disease activity, smoking and HLA-B27,” Rheumatology International, vol. 36, no. 4, pp. 541–549, 2016. View at Publisher · View at Google Scholar · View at Scopus
  194. D. Poddubnyy, M. Rudwaleit, H. Haibel et al., “Effect of non-steroidal anti-inflammatory drugs on radiographic spinal progression in patients with axial spondyloarthritis: Results from the German Spondyloarthritis Inception Cohort,” Annals of the Rheumatic Diseases, vol. 71, no. 10, pp. 1616–1622, 2012. View at Publisher · View at Google Scholar · View at Scopus
  195. G. T. Sakellariou, A. D. Anastasilakis, E. Kenanidis et al., “The effect of smoking on clinical and radiographic variables, and acute phase reactants in patients with ankylosing spondylitis,” Rheumatology International, vol. 35, no. 12, pp. 2109–2114, 2015. View at Publisher · View at Google Scholar · View at Scopus
  196. G. T. Sakellariou, A. Iliopoulos, M. Konsta et al., “Serum levels of Dkk-1, sclerostin and VEGF in patients with ankylosing spondylitis and their association with smoking, and clinical, inflammatory and radiographic parameters,” Joint Bone Spine, 2016. View at Publisher · View at Google Scholar · View at Scopus
  197. Z. C. Wang, J. G. Shi, X. S. Chen, G. H. Xu, L. J. Li, and L. S. Jia, “The role of smoking status and collagen IX polymorphisms in the susceptibility to cervical spondylotic myelopathy,” Genetics and Molecular Research, vol. 11, no. 2, pp. 1238–1244, 2012. View at Publisher · View at Google Scholar · View at Scopus
  198. M. Melis, S. L. Lobo, C. Ceneviz et al., “Effect of cigarette smoking on pain intensity of TMD patients: A pilot study,” Cranio: Journal of Craniomandibular Practice, vol. 28, no. 3, pp. 187–192, 2010. View at Publisher · View at Google Scholar · View at Scopus
  199. O. Miettinen, V. Anttonen, P. Patinen, J. Pakkila, L. Tjaderhane, and K. Sipila, “Prevalence of Temporomandibular Disorder Symptoms and Their Association with Alcohol and Smoking Habits,” Journal of Oral Facial Pain and Headache, vol. 31, no. 1, pp. 30–36, 2017. View at Publisher · View at Google Scholar
  200. A. E. Sanders, W. Maixner, A. G. Nackley et al., “Excess risk of temporomandibular disorder associated with cigarette smoking in young adults,” The Journal of Pain, vol. 13, no. 1, pp. 21–31, 2012. View at Publisher · View at Google Scholar · View at Scopus
  201. T. N. Weingarten, B. C. Iverson, Y. Shi, D. R. Schroeder, D. O. Warner, and K. I. Reid, “Impact of tobacco use on the symptoms of painful temporomandibular joint disorders,” PAIN, vol. 147, no. 1-3, pp. 67–71, 2009. View at Publisher · View at Google Scholar · View at Scopus
  202. R. A. Adedoyin, C. E. Mbada, A. M. Odiachi, B. O. A. Adegoke, and T. O. Awotidebe, “Differences in back extensor muscles fatigability for smoking and non-smoking athletes,” Isokinetics and Exercise Science, vol. 18, no. 3, pp. 149–155, 2010. View at Google Scholar · View at Scopus
  203. S. Al-Obaidi, N. Al-Sayegh, and M. Nadar, “Smoking impact on grip strength and fatigue resistance: Implications for exercise and hand therapy practice,” Journal of Physical Activity & Health, vol. 11, no. 5, pp. 1025–1031, 2014. View at Publisher · View at Google Scholar · View at Scopus
  204. M. Montes De Oca, E. Loeb, S. H. Torres, J. De Sanctis, N. Hernández, and C. Tálamo, “Peripheral muscle alterations in non-COPD smokers,” CHEST, vol. 133, no. 1, pp. 13–18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  205. L. J. Kim and N. Kim, “Difference in lateral abdominal muscle thickness during forceful exhalation in healthy smokers and non-smokers,” Journal of Back and Musculoskeletal Rehabilitation, vol. 25, no. 4, pp. 239–244, 2012. View at Publisher · View at Google Scholar · View at Scopus
  206. Y. Kimura, Y. Nakamoto, H. Shitama, S. Ohmine, M. Ide, and K. Hachisuka, “Influence of moderate smoking on physical fitness and local muscle oxygenation profile during incremental exercise,” Journal of UOEH, vol. 29, no. 2, pp. 149–158, 2007. View at Publisher · View at Google Scholar · View at Scopus
  207. M. O. Kok, T. Hoekstra, and J. W. R. Twisk, “The longitudinal relation between smoking and muscle strength in healthy adults,” European Addiction Research, vol. 18, no. 2, pp. 70–75, 2012. View at Publisher · View at Google Scholar · View at Scopus
  208. G. P. Kumar, “Assessment of fatigue susceptibility of the lumbar extensor muscles amongst smokes,” Biomedical Engineering - Applications, Basis and Communications, vol. 22, no. 4, pp. 321–326, 2010. View at Publisher · View at Google Scholar · View at Scopus
  209. S.-K. Lee, J.-W. Park, K.-H. Kim, and J.-H. Jung, “An analysis of the thickness of abdominal muscles during forceful expiration and pulmonary function in teenage smokers and nonsmokers,” Journal of Physical Therapy Science, vol. 25, no. 7, pp. 789–791, 2013. View at Publisher · View at Google Scholar · View at Scopus
  210. C. I. Morse, R. C. I. Wüst, D. A. Jones, A. De Haan, and H. Degens, “Muscle fatigue resistance during stimulated contractions is reduced in young male smokers,” Acta Physiologica, vol. 191, no. 2, pp. 123–129, 2007. View at Publisher · View at Google Scholar · View at Scopus
  211. C. D. C. Neves, A. C. R. Lacerda, V. K. S. Lage et al., “Oxidative stress and skeletal muscle dysfunction are present in healthy smokers,” Brazilian Journal of Medical and Biological Research, vol. 49, no. 11, 2016. View at Google Scholar · View at Scopus
  212. M. Orozco-Levi, C. Coronell, A. Ramírez-Sarmiento et al., “Injury of peripheral muscles in smokers with chronic obstructive pulmonary disease,” Ultrastructural Pathology, vol. 36, no. 4, pp. 228–238, 2012. View at Publisher · View at Google Scholar · View at Scopus
  213. M. S. Patel, A. V. Donaldson, A. Lewis et al., “Klotho and smoking - An interplay influencing the skeletal muscle function deficits that occur in COPD,” Respiratory Medicine, vol. 113, pp. 50–56, 2016. View at Publisher · View at Google Scholar · View at Scopus
  214. Z. Puthucheary, M. Kordi, J. Rawal, K. I. Eleftheriou, J. Payne, and H. E. Montgomery, “The Relationship between Lower Limb Bone and Muscle in Military Recruits, Response to Physical Training, and Influence of Smoking Status,” Scientific Reports, vol. 5, article no. 9323, 2015. View at Publisher · View at Google Scholar · View at Scopus
  215. P. B. Rapuri, J. C. Gallagher, and L. M. Smith, “Smoking Is a Risk Factor for Decreased Physical Performance in Elderly Women,” The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, vol. 62, no. 1, pp. 93–99, 2007. View at Publisher · View at Google Scholar
  216. M.-H. Rhee and L. J. Kim, “Differences in the activation of abdominal muscles during trunk extension between smokers and non-smokers,” Journal of Back and Musculoskeletal Rehabilitation, vol. 30, no. 1, pp. 35–38, 2017. View at Publisher · View at Google Scholar · View at Scopus
  217. O. Rom, K. Karkabi, A. Z. Reznick, Z. Keidar, and D. Aizenbud, “Relationship between history of smoking, metabolic and inflammatory markers, parameters of body composition and muscle strength,” Advances in Experimental Medicine and Biology, vol. 849, pp. 49–56, 2015. View at Publisher · View at Google Scholar · View at Scopus
  218. O. Rom, A. Z. Reznick, Z. Keidar, K. Karkabi, and D. Aizenbud, “Smoking cessation-related weight gain-beneficial effects on muscle mass, strength and bone health,” Addiction, vol. 110, no. 2, pp. 326–335, 2015. View at Publisher · View at Google Scholar · View at Scopus
  219. B. Van Den Borst, A. Koster, B. Yu et al., “Is age-related decline in lean mass and physical function accelerated by obstructive lung disease or smoking?” Thorax, vol. 66, no. 11, pp. 961–969, 2011. View at Publisher · View at Google Scholar · View at Scopus
  220. R. C. I. Wüst, R. T. Jaspers, W. J. Van Der Laarse, and H. Degens, “Skeletal muscle capillarization and oxidative metabolism in healthy smokers,” Applied Physiology, Nutrition, and Metabolism, vol. 33, no. 6, pp. 1240–1245, 2008. View at Publisher · View at Google Scholar · View at Scopus
  221. R. C. I. Wüst, C. I. Morse, A. Haan, J. Rittweger, D. A. Jones, and H. Degens, “Skeletal muscle properties and fatigue resistance in relation to smoking history,” European Journal of Applied Physiology, vol. 104, no. 1, pp. 103–110, 2008. View at Publisher · View at Google Scholar · View at Scopus
  222. B. Balain, C. Kerin, G. Kanes, S. N. Roberts, D. Rees, and J. H. Kuiper, “Effects of knee compartment, concomitant surgery and smoking on medium-term outcome of microfracture,” The Knee, vol. 19, no. 4, pp. 440–444, 2012. View at Publisher · View at Google Scholar · View at Scopus
  223. R. Blackwell, L. C. Schmitt, D. C. Flanigan, and R. A. Magnussen, “Smoking increases the risk of early meniscus repair failure,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 24, no. 5, pp. 1540–1543, 2016. View at Publisher · View at Google Scholar · View at Scopus
  224. M. L. Davies-Tuck, A. E. Wluka, A. Forbes et al., “Smoking is associated with increased cartilage loss and persistence of bone marrow lesions over 2 years in community-based individuals.,” Rheumatology, vol. 48, no. 10, pp. 1227–1231, 2009. View at Publisher · View at Google Scholar · View at Scopus
  225. C. Ding, F. Cicuttini, L. Blizzard, and G. Jones, “Smoking interacts with family history with regard to change in knee cartilage volume and cartilage defect development,” Arthritis & Rheumatology, vol. 56, no. 5, pp. 1521–1528, 2007. View at Publisher · View at Google Scholar · View at Scopus
  226. H. R. Gungor, K. Agladioglu, N. Akkaya, S. Akkaya, N. Ok, and L. Ozçakar, “The effects of smoking on ultrasonographic thickness and elastosonographic strain ratio measurements of distal femoral cartilage,” International Journal of Environmental Research and Public Health, vol. 13, no. 4, article no. 434, 2016. View at Publisher · View at Google Scholar · View at Scopus
  227. P. K. Jaiswal, S. Macmull, G. Bentley, R. W. J. Carrington, J. A. Skinner, and T. W. R. Briggs, “Does smoking influence outcome after autologous chondrocyte implantation? A case-controlled study,” The Journal of Bone & Joint Surgery (British Volume), vol. 91, no. 12, pp. 1575–1578, 2009. View at Publisher · View at Google Scholar · View at Scopus
  228. T. L. Racunica, M. Szramka, A. E. Wluka et al., “A positive association of smoking and articular knee joint cartilage in healthy people,” Osteoarthritis and Cartilage, vol. 15, no. 5, pp. 587–590, 2007. View at Publisher · View at Google Scholar · View at Scopus
  229. S. P. Appaduray and P. Lo, “Effects of diabetes and smoking on lumbar spinal surgery outcomes,” Journal of Clinical Neuroscience, vol. 20, no. 12, pp. 1713–1717, 2013. View at Publisher · View at Google Scholar · View at Scopus
  230. M. Bydon, M. Macki, R. De La Garza-Ramos et al., “Smoking as an independent predictor of reoperation after lumbar laminectomy: A study of 500 cases,” Journal of Neurosurgery: Spine, vol. 22, no. 3, pp. 288–293, 2015. View at Publisher · View at Google Scholar · View at Scopus
  231. J. D. Eubanks, S. W. Thorpe, V. K. Cheruvu, B. A. Braly, and J. D. Kang, “Does smoking influence fusion rates in posterior cervical arthrodesis with lateral mass instrumentation?” Clinical Orthopaedics and Related Research, vol. 469, no. 3, pp. 696–701, 2011. View at Publisher · View at Google Scholar · View at Scopus
  232. S. D. Glassman, J. R. Dimar, K. Burkus et al., “The efficacy of rhBMP-2 for posterolateral lumbar fusion in smokers,” The Spine Journal, vol. 32, no. 15, pp. 1693–1698, 2007. View at Publisher · View at Google Scholar · View at Scopus
  233. S. Gulati, T. Nordseth, U. S. Nerland et al., “Does daily tobacco smoking affect outcomes after microdecompression for degenerative central lumbar spinal stenosis? – A multicenter observational registry-based study,” Acta Neurochirurgica, vol. 157, no. 7, pp. 1157–1164, 2015. View at Publisher · View at Google Scholar · View at Scopus
  234. P. C. Hermann, M. Webler, R. Bornemann et al., “Influence of smoking on spinal fusion after spondylodesis surgery: A comparative clinical study,” Technology and Health Care, vol. 24, no. 5, pp. 737–744, 2016. View at Publisher · View at Google Scholar · View at Scopus
  235. D. Lau, D. Chou, J. E. Ziewacz, and P. V. Mummaneni, “The effects of smoking on perioperative outcomes and pseudarthrosis following anterior cervical corpecto,” Journal of Neurosurgery: Spine, vol. 21, no. 4, pp. 547–558, 2014. View at Publisher · View at Google Scholar · View at Scopus
  236. C. Leboeuf-Yde, P. Kjær, T. Bendix, and C. Manniche, “Self-reported hard physical work combined with heavy smoking or overweight may result in so-called Modic changes,” BMC Musculoskeletal Disorders, vol. 9, article no. 5, 2008. View at Publisher · View at Google Scholar · View at Scopus
  237. J. C. Lee, S.-H. Lee, C. Peters, and K. D. Riew, “Adjacent segment pathology requiring reoperation after anterior cervical arthrodesis: The influence of smoking, sex, and number of operated levels,” The Spine Journal, vol. 40, no. 10, pp. E571–E577, 2015. View at Publisher · View at Google Scholar · View at Scopus
  238. M. Macki, S. Syeda, K. R. Rajjoub et al., “The Effect of Smoking Status on Successful Arthrodesis After Lumbar Instrumentation Supplemented with rhBMP-2,” World Neurosurgery, vol. 97, pp. 459–464, 2017. View at Publisher · View at Google Scholar · View at Scopus
  239. C. T. Martin, Y. Gao, K. R. Duchman, and A. J. Pugely, “The impact of current smoking and smoking cessation on short-term morbidity risk after lumbar spine surgery,” The Spine Journal, vol. 41, no. 7, pp. 577–584, 2016. View at Publisher · View at Google Scholar · View at Scopus
  240. B. Sandén, P. Försth, and K. Michaëlsson, “Smokers show less improvement than nonsmokers two years after surgery for lumbar spinal stenosis: a study of 4555 patients from the Swedish spine register,” The Spine Journal, vol. 36, no. 13, pp. 1059–1064, 2011. View at Publisher · View at Google Scholar · View at Scopus
  241. K. Aǧladioǧlu, N. Akkaya, H. R. Güngör, S. Akkaya, N. Ök, and L. Özçakar, “Effects of cigarette smoking on elastographic strain ratio measurements of patellar and achilles tendons,” Journal of Ultrasound in Medicine, vol. 35, no. 11, pp. 2431–2438, 2016. View at Publisher · View at Google Scholar · View at Scopus
  242. S. Carbone, S. Gumina, V. Arceri, V. Campagna, C. Fagnani, and F. Postacchini, “The impact of preoperative smoking habit on rotator cuff tear: Cigarette smoking influences rotator cuff tear sizes,” Journal of Shoulder and Elbow Surgery, vol. 21, no. 1, pp. 56–60, 2012. View at Publisher · View at Google Scholar · View at Scopus
  243. I. Justan, P. Ovesna, T. Kubek, P. Hyza, I. Stupka, and Z. Dvorak, “The effect of smoking on post-operative finger range of motion in patients with tendon grafts,” In Vivo, vol. 25, no. 4, pp. 697–702, 2011. View at Google Scholar
  244. J. Kukkonen, T. Kauko, P. Virolainen, and V. Äärimaa, “Smoking and operative treatment of rotator cuff tear,” Scandinavian Journal of Medicine & Science in Sports, vol. 24, no. 2, pp. 400–403, 2014. View at Publisher · View at Google Scholar · View at Scopus
  245. K. Lundgreen, Ø. B. Lian, A. Scott, P. Nassab, A. Fearon, and L. Engebretsen, “Rotator cuff tear degeneration and cell apoptosis in smokers versus nonsmokers,” Arthroscopy - Journal of Arthroscopic and Related Surgery, vol. 30, no. 8, pp. 936–941, 2014. View at Publisher · View at Google Scholar · View at Scopus
  246. B. W. Oudelaar, E. M. Ooms, R. M. H. A. Huis In't Veld, R. Schepers-Bok, and A. J. Vochteloo, “Smoking and morphology of calcific deposits affect the outcome of needle aspiration of calcific deposits (NACD) for calcific tendinitis of the rotator cuff,” European Journal of Radiology, vol. 84, no. 11, pp. 2255–2260, 2015. View at Publisher · View at Google Scholar · View at Scopus
  247. R. H. Brophy, R. W. Wright, L. J. Huston et al., “Factors associated with infection following anterior cruciate ligament reconstruction,” Journal of Bone and Joint Surgery - American Volume, vol. 97, no. 6, pp. 450–454, 2015. View at Publisher · View at Google Scholar · View at Scopus
  248. J. M. Cancienne, F. W. Gwathmey, M. D. Miller, and B. C. Werner, “Tobacco Use Is Associated with Increased Complications after Anterior Cruciate Ligament Reconstruction,” The American Journal of Sports Medicine, vol. 44, no. 1, pp. 99–104, 2016. View at Publisher · View at Google Scholar · View at Scopus
  249. S.-J. Kim, S.-K. Lee, C. H. Choi, S.-H. Kim, S.-H. Kim, and M. Jung, “Graft selection in anterior cruciate ligament reconstruction for smoking patients,” The American Journal of Sports Medicine, vol. 42, no. 1, pp. 166–172, 2014. View at Publisher · View at Google Scholar · View at Scopus
  250. S.-J. Kim, S.-K. Lee, S.-H. Kim, S.-H. Kim, S.-W. Ryu, and M. Jung, “Effect of Cigarette Smoking on the Clinical Outcomes of ACL Reconstruction,” The Journal of Bone & Joint Surgery, vol. 96, no. 12, pp. 1007–1013, 2014. View at Publisher · View at Google Scholar · View at Scopus
  251. J. Golding, K. Northstone, S. Gregory, L. L. Miller, and M. Pembrey, “The anthropometry of children and adolescents may be influenced by the prenatal smoking habits of their grandmothers: a longitudinal cohort study,” American journal of human biology : the official journal of the Human Biology Council, vol. 26, no. 6, pp. 731–739, 2014. View at Publisher · View at Google Scholar · View at Scopus
  252. M. P. Hagnäs, H. Cederberg, J. Jokelainen, I. Mikkola, U. Rajala, and S. Keinänen-Kiukaanniemi, “Association of maternal smoking during pregnancy with aerobic fitness of offspring in young adulthood: a prospective cohort study,” BJOG: An International Journal of Obstetrics & Gynaecology, vol. 123, no. 11, pp. 1789–1795, 2016. View at Publisher · View at Google Scholar · View at Scopus
  253. T. Holmberg, M. Bech, T. Curtis, K. Juel, M. Grønbæk, and K. Brixen, “Association between passive smoking in adulthood and phalangeal bone mineral density: Results from the KRAM study-the Danish Health Examination Survey 2007-2008,” Osteoporosis International, vol. 22, no. 12, pp. 2989–2999, 2011. View at Publisher · View at Google Scholar · View at Scopus
  254. G. Jones, K. L. Hynes, and T. Dwyer, “The association between breastfeeding, maternal smoking in utero, and birth weight with bone mass and fractures in adolescents: A 16-year longitudinal study,” Osteoporosis International, vol. 24, no. 5, pp. 1605–1611, 2013. View at Publisher · View at Google Scholar · View at Scopus
  255. K. H. Kim, C. M. Lee, S. M. Park et al., “Secondhand smoke exposure and osteoporosis in never-smoking postmenopausal women: The Fourth Korea National Health and Nutrition Examination Survey,” Osteoporosis International, vol. 24, no. 2, pp. 523–532, 2013. View at Publisher · View at Google Scholar · View at Scopus
  256. C. MacDonald-Wallis, J. H. Tobias, G. D. Smith, and D. A. Lawlor, “Parental smoking during pregnancy and offspring bone mass at age 10 years: Findings from a prospective birth cohort,” Osteoporosis International, vol. 22, no. 6, pp. 1809–1819, 2011. View at Publisher · View at Google Scholar · View at Scopus
  257. J. Martínez-Mesa, A. M. B. Menezes, L. D. Howe et al., “Lifecourse relationship between maternal smoking during pregnancy, birth weight, contemporaneous anthropometric measurements and bone mass at 18years old. The 1993 Pelotas Birth Cohort,” Early Human Development, vol. 90, no. 12, pp. 901–906, 2014. View at Publisher · View at Google Scholar · View at Scopus
  258. E. Żądzińska, S. Kozieł, B. Borowska-Strugińska, I. Rosset, A. Sitek, and W. Lorkiewicz, “Parental smoking during pregnancy shortens offspring's legs,” HOMO—Journal of Comparative Human Biology, vol. 67, no. 6, pp. 498–507, 2016. View at Publisher · View at Google Scholar · View at Scopus