Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2010 (2010), Article ID 423781, 12 pages
http://dx.doi.org/10.1155/2010/423781
Review Article

Tumor Antigen-Dependent and Tumor Antigen-Independent Activation of Antitumor Activity in T Cells by a Bispecific Antibody-Modified Tumor Vaccine

1German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
2Tumor Immunology Program, DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
3Medical Centre for Immunology and Oncology (IOZK), 50674 Cologne, Germany

Received 1 July 2010; Accepted 14 December 2010

Academic Editor: Stuart Mannering

Copyright © 2010 Philippe Fournier and Volker Schirrmacher. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. W. Silk and O. J. Finn, “Cancer vaccines: a promising cancer therapy against all odds,” Future Oncology, vol. 3, no. 3, pp. 299–306, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. D. Nagorsen and E. Thiel, “Clinical and immunologic responses to active specific cancer vaccines in human colorectal cancer,” Clinical Cancer Research, vol. 12, no. 10, pp. 3064–3069, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. S. A. Rosenberg, J. C. Yang, and N. P. Restifo, “Cancer immunotherapy: moving beyond current vaccines,” Nature Medicine, vol. 10, no. 9, pp. 909–915, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. L. Rivoltini, P. Canese, V. Huber et al., “Escape strategies and reasons for failure in the interaction between tumour cells and the immune system: how can we tilt the balance towards immune-mediated cancer control?” Expert Opinion on Biological Therapy, vol. 5, no. 4, pp. 463–476, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. C. Demanet, A. Mulder, V. Deneys et al., “Down-regulation of HLA-A and HLA-Bw6, but not HLA-Bw4, allospecificities in leukemic cells: an escape mechanism from CTL and NK attack?” Blood, vol. 103, no. 8, pp. 3122–3130, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. G. Filaci and N. Suciu-Foca, “CD8+ T suppressor cells are back to the game: are they players in autoimmunity?” Autoimmunity Reviews, vol. 1, no. 5, pp. 279–283, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Jonuleit and E. Schmitt, “The regulator T cell family: distinct subsets and their interrelations,” Journal of Immunology, vol. 171, no. 12, pp. 6323–6327, 2003. View at Google Scholar · View at Scopus
  8. A. Ben-Baruch, “Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators,” Seminars in Cancer Biology, vol. 16, no. 1, pp. 38–52, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. R. L. Elliott and G. C. Blobe, “Role of transforming growth factor beta in human cancer,” Journal of Clinical Oncology, vol. 23, no. 9, pp. 2078–2093, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. V. C. Liu, L. Y. Wong, T. Jang et al., “Tumor evasion of the immune system by converting CD4CD25 T cells into CD4CD25 T regulatory cells: role of tumor-derived TGF-β,” Journal of Immunology, vol. 178, no. 5, pp. 2883–2892, 2007. View at Google Scholar · View at Scopus
  11. J. Zhou, F. Ye, H. Chen, W. Lv, and N. Gan, “The expression of interleukin-10 in patients with primary ovarian epithelial carcinoma and in ovarian carcinoma cell lines,” Journal of International Medical Research, vol. 35, no. 3, pp. 290–300, 2007. View at Google Scholar · View at Scopus
  12. W. Zou, “Immunosuppressive networks in the tumour environment and their therapeutic relevance,” Nature Reviews Cancer, vol. 5, no. 4, pp. 263–274, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. X. Zhang, H. Huang, J. Yuan et al., “CD48 dendritic cells prime CD4 T regulatory 1 cells to suppress antitumor immunity,” Journal of Immunology, vol. 175, no. 5, pp. 2931–2937, 2005. View at Google Scholar · View at Scopus
  14. M. Terabe, S. Matsui, J.-M. Park et al., “Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence,” Journal of Experimental Medicine, vol. 198, no. 11, pp. 1741–1752, 2003. View at Publisher · View at Google Scholar · View at PubMed
  15. Y. Nefedova, M. Huang, S. Kusmartsev et al., “Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer,” Journal of Immunology, vol. 172, no. 1, pp. 464–474, 2004. View at Google Scholar · View at Scopus
  16. G. J. Prud'homme and C. A. Piccirillo, “The inhibitory effects of transforming growth factor-beta-1 (TGF-β1) in autoimmune diseases,” Journal of Autoimmunity, vol. 14, no. 1, pp. 23–42, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. N. Pakravan, A. T. Hassan, and Z. M. Hassan, “Naturally occurring self-reactive CD4+CD25+ regulatory T cells: universal immune code,” Cellular & Molecular Immunology, vol. 4, no. 3, pp. 197–201, 2007. View at Google Scholar · View at Scopus
  18. P. Bretscher, “The two-signal model of lymphocyte activation twenty-one years later,” Immunology Today, vol. 13, no. 2, pp. 74–76, 1992. View at Google Scholar · View at Scopus
  19. C. H. June, J. A. Bluestone, L. M. Nadler, and C. B. Thompson, “The B7 and CD28 receptor families,” Immunology Today, vol. 15, no. 7, pp. 321–331, 1994. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Matzinger, “Tolerance, danger, and the extended family,” Annual Review of Immunology, vol. 12, pp. 991–1045, 1994. View at Google Scholar · View at Scopus
  21. C. A. Janeway Jr., “The immune system evolved to discriminate infectious nonself from noninfectious self,” Immunology Today, vol. 13, no. 1, pp. 11–16, 1992. View at Google Scholar · View at Scopus
  22. D. J. Alexander, “Newcastle disease and other Paramyxoviridae infections,” in Diseases of Poultry, B. W. Calnek, H. J. Barnes, C. W. Beard, L. McDougald, and J. Y. M. Saif, Eds., pp. 541–569, Iowa State University, Ames, Iowa, USA, 10th edition, 1997. View at Google Scholar
  23. M. Aghi and R. L. Martuza, “Oncolytic viral therapies—the clinical experience,” Oncogene, vol. 24, no. 52, pp. 7802–7816, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. J. Zeng, P. Fournier, and V. Schirrmacher, “Induction of interferon-α and tumor necrosis factor-related apoptosis-inducing ligand in human blood mononuclear cells by hemagglutinin-neuraminidase but not F protein of Newcastle disease virus,” Virology, vol. 297, no. 1, pp. 19–30, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Fournier, J. Zeng, and V. Schirrmacher, “Two ways to induce innate immune responses in human PBMCs: paracrine stimulation of IFN-α responses by viral protein or dsRNA,” International Journal of Oncology, vol. 23, pp. 673–680, 2003. View at Google Scholar
  26. T. Taniguchi and A. Takaoka, “The interferon-α/β system in antiviral responses: a multimodal machinery of gene regulation by the IRF family of transcription factors,” Current Opinion in Immunology, vol. 14, no. 1, pp. 111–116, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Le Bon and D. F. Tough, “Links between innate and adaptive immunity via type I interferon,” Current Opinion in Immunology, vol. 14, no. 4, pp. 432–436, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Heicappell, V. Schirrmacher, P. Von Hoegen, T. Ahlert, and B. Appelhans, “Prevention of metastatic spread by postoperative immunotherapy with virally modified autologous tumor cells. I. Parameters for optimal therapeutic effects,” International Journal of Cancer, vol. 37, no. 4, pp. 569–577, 1986. View at Google Scholar
  29. V. Schirrmacher and R. Heicappell, “Prevention of metastatic spread by postoperative immunotherapy with virally modified autologous tumor cells. II. Establishment of specific systemic anti-tumor immunity,” Clinical and Experimental Metastasis, vol. 5, no. 2, pp. 147–156, 1987. View at Google Scholar · View at Scopus
  30. V. Schirrmacher, C. Haas, R. Bonifer, T. Ahlert, R. Gerhards, and C. Ertel, “Human tumor cell modification by virus infection: an efficient and safe way to produce cancer vaccine with pleiotropic immune stimulatory properties when using Newcastle disease virus,” Gene Therapy, vol. 6, no. 1, pp. 63–73, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. T. Ahlert, W. Sauerbrei, G. Bastert et al., “Tumor-cell number and viability as quality and efficacy parameters of autologous virus-modified cancer vaccines in patients with breast or ovarian cancer,” Journal of Clinical Oncology, vol. 15, no. 4, pp. 1354–1366, 1997. View at Google Scholar · View at Scopus
  32. V. Schirrmacher, “Clinical trials of antitumor vaccination with an autologous tumor cell vaccine modified by virus infection: improvement of patient survival based on improved antitumor immune memory,” Cancer Immunology, Immunotherapy, vol. 54, no. 6, pp. 587–598, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. D. Ockert, V. Schirrmacher, N. Beck et al., “Newcastle disease virus-infected intact autologous tumor cell vaccine for adjuvant active specific immunotherapy of resected colorectal carcinoma,” Clinical Cancer Research, vol. 2, no. 1, pp. 21–28, 1996. View at Google Scholar · View at Scopus
  34. V. Schirrmacher, T. Ahlert, T. Probstle et al., “Immunization with virus-modified tumor cells,” Seminars in Oncology, vol. 25, no. 6, pp. 677–696, 1998. View at Google Scholar · View at Scopus
  35. J. Karcher, G. Dyckhoff, P. Beckhove et al., “Antitumor vaccination in patients with head and neck squamous cell carcinomas with autologous virus-modified tumor cells,” Cancer Research, vol. 64, no. 21, pp. 8057–8061, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. H. H. Steiner, M. M. Bonsanto, P. Beckhove et al., “Antitumor vaccination of patients with glioblastoma multiforme: a pilot study to assess feasibility, safety, and clinical benefits,” Journal of Clinical Oncology, vol. 22, no. 21, pp. 4272–4281, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. T. Schulze, W. Kemmner, J. Weitz, K. D. Wernecke, V. Schirrmacher, and P. M. Schlag, “Efficiency of adjuvant active specific immunization with Newcastle disease virus modified tumor cells in colorectal cancer patients following resection of liver metastases: results of a prospective randomized trial,” Cancer Immunology, Immunotherapy, vol. 58, no. 1, pp. 61–69, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. C. Haas, C. Ertel, R. Gerhards, and V. Schirrmacher, “Introduction of adhesive and costimulatory immune functions into tumor cells by infection with Newcastle Disease Virus,” International Journal of Oncology, vol. 13, no. 6, pp. 1105–1115, 1998. View at Google Scholar · View at Scopus
  39. C. C. Termeer, V. Schirrmacher, E. B. Bröcker, and J. C. Becker, “Newcastle disease virus infection induces B7-1/B7-2-independent T-cell costimulatory activity in human melanoma cells,” Cancer Gene Therapy, vol. 7, no. 2, pp. 316–323, 2000. View at Google Scholar · View at Scopus
  40. M. A. Nolte, R. W. Van Olffen, K. P. J. M. Van Gisbergen, and R. A. W. Van Lier, “Timing and tuning of CD27-CD70 interactions: the impact of signal strength in setting the balance between adaptive responses and immunopathology,” Immunological Reviews, vol. 229, no. 1, pp. 216–231, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. T. Yamamoto, M. Hattori, and T. Yoshida, “Induction of T-cell activation or anergy determined by the combination of intensity and duration of T-cell receptor stimulation, and sequential induction in an individual cell,” Immunology, vol. 121, no. 3, pp. 383–391, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. M. Aigner, M. Janke, M. Lulei, P. Beckhove, P. Fournier, and V. Schirrmacher, “An effective tumor vaccine optimized for costimulation via bispecific and trispecific fusion proteins,” International Journal of Oncology, vol. 32, no. 4, pp. 777–789, 2008. View at Google Scholar · View at Scopus
  43. C. Haas, M. Lulei, P. Fournier, A. Arnold, and V. Schirrmacher, “A tumor vaccine containing anti-CD3 and anti-CD28 bispecific antibodies triggers strong and durable antitumor activity in human lymphocytes,” International Journal of Cancer, vol. 118, no. 3, pp. 658–667, 2006. View at Publisher · View at Google Scholar · View at PubMed
  44. M. Feuerer, P. Beckhove, L. Bai et al., “Therapy of human tumors in NOD/SCID mice with patient-derived reactivated memory T cells from bone marrow,” Nature Medicine, vol. 7, no. 4, pp. 452–458, 2001. View at Publisher · View at Google Scholar · View at PubMed
  45. G. M. Barton and R. Medzhitov, “Control of adaptive immune responses by Toll-like receptors,” Current Opinion in Immunology, vol. 14, no. 3, pp. 380–383, 2002. View at Publisher · View at Google Scholar
  46. P. Matzinger, “Tolerance, danger, and the extended family,” Annual Review of Immunology, vol. 12, pp. 991–1045, 1994. View at Google Scholar
  47. C. Forden, “Do T lymphocytes correlate danger signals to antigen?” Medical Hypotheses, vol. 62, no. 6, pp. 898–906, 2004. View at Publisher · View at Google Scholar · View at PubMed
  48. T. Kawai and S. Akira, “Pathogen recognition with Toll-like receptors,” Current Opinion in Immunology, vol. 17, no. 4, pp. 338–344, 2005. View at Publisher · View at Google Scholar · View at PubMed
  49. O. Schulz, S. S. Diebold, M. Chen et al., “Toll-like receptor 3 promotes cross-priming to virus-infected cells,” Nature, vol. 433, no. 7028, pp. 887–892, 2005. View at Publisher · View at Google Scholar · View at PubMed
  50. R. E. Berg and J. Forman, “The role of CD8+ T cells in innate immunity and in antigen non-specific protection,” Current Opinion in Immunology, vol. 18, no. 3, pp. 338–343, 2006. View at Publisher · View at Google Scholar · View at PubMed
  51. B. J. Marsland, C. Nembrini, N. Schmitz et al., “Innate signals compensate for the absence of PKC-θ during in vivo CD8+ T cell effector and memory responses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 40, pp. 14374–14379, 2005. View at Publisher · View at Google Scholar · View at PubMed
  52. P. Fournier and V. Schirrmacher, “Randomized clinical studies of anti-tumor vaccination: state of the art in 2008,” Expert Review of Vaccines, vol. 8, no. 1, pp. 51–66, 2009. View at Publisher · View at Google Scholar · View at PubMed
  53. S. Dhanji, S. J. Teh, D. Oble, J. J. Priatel, and H. S. Teh, “Self-reactive memory-phenotype CD8+ T cells exhibit both MHC-restricted and non-MHC-restricted cytotoxicity: a role for the T-cell receptor and natural killer cell receptors,” Blood, vol. 104, no. 7, pp. 2116–2123, 2004. View at Publisher · View at Google Scholar · View at PubMed
  54. S. Dhanji and H. S. Teh, “IL-2-activated CD8CD44 cells express both adaptive and innate immune system receptors and demonstrate specificity for syngeneic tumor cells,” Journal of Immunology, vol. 171, no. 7, pp. 3442–3450, 2003. View at Google Scholar
  55. J. A. Gollob, C. P. Schnipper, E. Orsini et al., “Characterization of a novel subset of CD8+ T cells that expands in patients receiving interleukin-12,” Journal of Clinical Investigation, vol. 102, no. 3, pp. 561–575, 1998. View at Google Scholar
  56. S. Slavin, A. Ackerstein, R. Or et al., “Immunotherapy in high-risk chemotherapy-resistant patients with metastatic solid tumors and hematological malignancies using intentionally mismatched donor lymphocytes activated with rIL-2: a phase I study,” Cancer Immunology, Immunotherapy, vol. 59, no. 10, pp. 1511–1519, 2010. View at Publisher · View at Google Scholar · View at PubMed
  57. V. Schirrmacher and P. Fournier, “Danger signals in tumor cells: a risk factor for autoimmune disease?” Expert Review of Vaccines, vol. 9, no. 4, pp. 347–350, 2010. View at Publisher · View at Google Scholar · View at PubMed