Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2011, Article ID 158735, 12 pages
http://dx.doi.org/10.1155/2011/158735
Research Article

Development of Type 1 Diabetes Mellitus in Nonobese Diabetic Mice Follows Changes in Thymocyte and Peripheral T Lymphocyte Transcriptional Activity

1Molecular Immunogenetics Group, Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), 14040-900, School Ribeirão Preto, SP, Brazil
2Department of Biology, School of Philosophy, Science and Letters of Ribeirão Preto, USP, 14040-900 Ribeirão Preto, SP, Brazil
3Department of Clinical Medicine, Faculty of Medicine of Ribeirão Preto, USP, 14040-900, Ribeirão Preto, SP, Brazil
4Disciplines of Genetics and Molecular Biology, Department of Morphology (DMEF), School of Dentistry of Ribeirão Preto, USP, 14040-900 Ribeirão Preto, SP, Brazil

Received 13 January 2011; Revised 21 March 2011; Accepted 22 March 2011

Academic Editor: Vincent Geenen

Copyright © 2011 Thais A. Fornari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. L. Notkins and Å. Lernmark, “Autoimmune type 1 diabetes: resolved and unresolved issues,” Journal of Clinical Investigation, vol. 108, no. 9, pp. 1247–1252, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Regnault, J. Osorio Y Fortea, D. Miao, G. Eisenbarth, and E. Melanitou, “Early over expression of messenger RNA for multiple genes, including insulin, in the Pancreatic Lymph Nodes of NOD mice is associated with Islet Autoimmunity,” BMC Medical Genomics, vol. 2, article no. 63, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. E. H. Leiter, M. Prochazka, and D. L. Coleman, “The non-obese diabetic (NOD) mouse,” American Journal of Pathology, vol. 128, no. 2, pp. 380–383, 1987. View at Google Scholar · View at Scopus
  4. M. A. Atkinson and E. H. Leiter, “The NOD mouse model of type 1 diabetes: as good as it gets?” Nature Medicine, vol. 5, no. 6, pp. 601–604, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. M. S. Anderson and J. A. Bluestone, “The NOD mouse: a model of immune dysregulation,” Annual Review of Immunology, vol. 23, pp. 447–485, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. J. P. Driver, D. V. Serreze, and Y. -G. Chen, “Mouse models for the study of autoimmune type 1 diabetes: a NOD to similarities and differences to human disease,” Seminars in Immunopathology, vol. 33, no. 1, pp. 67–87, 2011. View at Publisher · View at Google Scholar
  7. H. Ikegami, S. Makino, E. Yamato et al., “Identification of a new susceptibility locus for insulin-dependent diabetes mellitus by ancestral haplotype congenic mapping,” Journal of Clinical Investigation, vol. 96, no. 4, pp. 1936–1942, 1995. View at Google Scholar · View at Scopus
  8. L. S. Wicker, J. A. Todd, and L. B. Peterson, “Genetic control of autoimmune diabetes in the NOD mouse,” Annual Review of Immunology, vol. 13, pp. 179–200, 1995. View at Google Scholar · View at Scopus
  9. J. A. Shizuru, C. Taylor-Edwards, B. A. Banks, A. K. Gregory, and C. G. Fathman, “Immunotherapy of the nonobese diabetic mouse: treatment with an antibody to T-helper lymphocytes,” Science, vol. 240, no. 4852, pp. 659–662, 1988. View at Google Scholar · View at Scopus
  10. F. S. Wong, I. Visintin, LI. Wen, J. Granata, R. Flavell, and C. A. Janeway, “The role of lymphocyte subsets in accelerated diabetes in nonobese diabetic-rat insulin promoter-B7-1 (NOD-RIP-B7-1) mice,” Journal of Experimental Medicine, vol. 187, no. 12, pp. 1985–1993, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. BO. Wang, A. Gonzalez, C. Benoist, and D. Mathis, “The role of CD8 T cells in the initiation of insulin-dependent diabetes mellitus,” European Journal of Immunology, vol. 26, no. 8, pp. 1762–1769, 1996. View at Google Scholar · View at Scopus
  12. J. Katz, C. Benoist, and D. Mathis, “Major histocompatibility complex class I molecules are required for the development of insulitis in non-obese diabetic mice,” European Journal of Immunology, vol. 23, no. 12, pp. 3358–3360, 1993. View at Publisher · View at Google Scholar · View at Scopus
  13. D. V. Serreze, E. H. Leiter, G. J. Christianson, D. Greiner, and D. C. Roopenian, “Major histocompatibility complex class I-deficient NOD-B2m(null) mice are diabetes and insulitis resistant,” Diabetes, vol. 43, no. 3, pp. 505–509, 1994. View at Google Scholar · View at Scopus
  14. T. Sumida, M. Furukawa, A. Sakamoto et al., “Prevention of insulitis and diabetes in β-microglobulin-deficient non-obese diabetic mice,” International Immunology, vol. 6, no. 9, pp. 1445–1449, 1994. View at Google Scholar · View at Scopus
  15. J. D. Katz, B. Wang, K. Haskins, C. Benoist, and D. Mathis, “Following a diabetogenic T cell from genesis through pathogenesis,” Cell, vol. 74, no. 6, pp. 1089–1100, 1993. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Bergman and K. Haskins, “Islet-specific T-cell clones from the NOD mouse respond to β-granule antigen,” Diabetes, vol. 43, no. 2, pp. 197–203, 1994. View at Google Scholar · View at Scopus
  17. A. Gonzalez, J. D. Katz, M. G. Mattei, H. Kikutani, C. Benoist, and D. Mathis, “Genetic control of diabetes progression,” Immunity, vol. 7, no. 6, pp. 873–883, 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. O. Kanagawa, A. Militech, and B. A. Vaupel, “Regulation of diabetes development by regulatory T cells in pancreatic islet antigen-specific TCR transgenic nonobese diabetic mice,” Journal of Immunology, vol. 168, no. 12, pp. 6159–6164, 2002. View at Google Scholar · View at Scopus
  19. L. Poirot, C. Benoist, and D. Mathis, “Natural killer cells distinguish innocuous and destructive forms of pancreatic islet autoimmunity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 21, pp. 8102–8107, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Zucchelli, P. Holler, T. Yamagata, M. Roy, C. Benoist, and D. Mathis, “Defective central tolerance induction in NOD mice: genomics and genetics,” Immunity, vol. 22, no. 3, pp. 385–396, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. K. L. Rock, S. Gamble, and L. Rothstein, “Presentation of exogenous antigen with class I major histocompatibility complex molecules,” Science, vol. 249, no. 4971, pp. 918–921, 1990. View at Google Scholar
  22. M. Kovacsovics-Bankowski and K. L. Rock, “Presentation of exogenous antigens by macrophages: analysis of major histocompatibility complex class I and II presentation and regulation by cytokines,” European Journal of Immunology, vol. 24, no. 10, pp. 2421–2428, 1994. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Kyewski and J. Derbinski, “Self-representation in the thymus: an extended view,” Nature Reviews Immunology, vol. 4, no. 9, pp. 688–698, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. D. A. R. Magalhães, E. L. V. Silveira, C. M. Junta et al., “Promiscuous gene expression in the thymus: the root of central tolerance,” Clinical and Developmental Immunology, vol. 13, no. 2–4, pp. 81–99, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Klein and B. Kyewski, “Self-antigen presentation by thymic stromal cells: a subtle division of labor,” Current Opinion in Immunology, vol. 12, no. 2, pp. 179–186, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Derbinski, A. Schulte, B. Kyewski, and L. Klein, “Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self,” Nature Immunology, vol. 2, no. 11, pp. 1032–1039, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Kyewski and L. Klein, “A central role for central tolerance,” Annual Review of Immunology, vol. 24, pp. 571–606, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Takahama, “Journey through the thymus: stromal guides for T-cell development and selection,” Nature Reviews Immunology, vol. 6, no. 2, pp. 127–135, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. G. A. Hollönder, “Claudins provide a breath of fresh Aire,” Nature Immunology, vol. 8, no. 3, pp. 234–236, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Irla, S. Hugues, J. Gill et al., “Autoantigen-specific interactions with CD4+ thymocytes control mature medullary thymic epithelial cell cellularity,” Immunity, vol. 29, no. 3, pp. 451–463, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Villaseñor, W. Besse, C. Benoist, and D. Mathis, “Ectopic expression of peripheral-tissue antigens in the thymic epithelium: probabilistic, monoallelic, misinitiated,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 41, pp. 15854–15859, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. A. R. Hayward and M. Shreiber, “Neonatal injection of CD3 antibody into nonobese diabetic mice reduces the incidence of insulitis and diabetes,” Journal of Immunology, vol. 143, no. 5, pp. 1555–1559, 1989. View at Google Scholar · View at Scopus
  33. http://www.ebi.ac.uk/miamexpress.
  34. http://www.agilent.com/chem/genespring.
  35. M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, “Cluster analysis and display of genome-wide expression patterns,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 25, pp. 14863–14868, 1998. View at Publisher · View at Google Scholar · View at Scopus
  36. http://david.abcc.ncifcrf.gov.
  37. http://smd.stanford.edu/cgi-bin/source/sourceSearch.
  38. T. A. Fornari, P. B. Donate, C. Macedo, M. M. C. Marques, D. A. Magalhães, and G. A. S. Passos, “Age-related deregulation of Aire and peripheral tissue antigen genes in the thymic stroma of non-obese diabetic (NOD) mice is associated with autoimmune type 1 diabetes mellitus (DM-1),” Molecular and Cellular Biochemistry, vol. 342, no. 1-2, pp. 21–28, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. Q. S. Mi, D. Ly, S. E. Lamhamedi-Cherradi et al., “Blockade of tumor necrosis factor-related apoptosis-inducing ligand exacerbates type 1 diabetes in NOD mice,” Diabetes, vol. 52, no. 8, pp. 1967–1975, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Kang, E.-J. Park, Y. Joe et al., “Systemic delivery of TNF-Related Apoptosis-Inducing Ligand (TRAIL) elevates levels of tissue inhibitor of metalloproteinase-1 (TIMP-1) and prevents type 1 diabetes in nonobese diabetic mice,” Endocrinology, vol. 151, no. 12, pp. 5638–5646, 2010. View at Publisher · View at Google Scholar
  41. J. D. Fontenot, M. A. Gavin, and A. Y. Rudensky, “Foxp3 programs the development and function of CD4+CD25+ regulatory T cells,” Nature Immunology, vol. 4, no. 4, pp. 330–336, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Hori, T. Nomura, and S. Sakaguchi, “Control of regulatory T cell development by the transcription factor Foxp3,” Science, vol. 299, no. 5609, pp. 1057–1061, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. J. H. Buckner, “Mechanisms of impaired regulation by CD4+ CD25+ FOXP3+ regulatory T cells in human autoimmune diseases,” Nature Reviews Immunology, vol. 10, no. 12, pp. 849–859, 2010. View at Publisher · View at Google Scholar
  44. P. B. Donate, T. A. Fornari, C. M. Junta et al., “Collagen induced arthritis (CIA) in mice features regulatory transcriptional network connecting major histocompatibility complex (MHC H2) with autoantigen genes in the thymus,” Immunobiology, vol. 216, no. 5, pp. 591–603, 2011. View at Publisher · View at Google Scholar