Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2011, Article ID 980594, 9 pages
http://dx.doi.org/10.1155/2011/980594
Review Article

Changing Concepts of “Latent Tuberculosis Infection” in Patients Living with HIV Infection

1The Desmond Tutu HIV Centre, Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
2Clinical Research Unit, Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
3Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
4Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
5Division of Medicine, Imperial College London, London W2 1PG, UK

Received 9 June 2010; Accepted 25 August 2010

Academic Editor: Estee Torok

Copyright © 2011 Stephen D. Lawn et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Dye and B. G. Williams, “The population dynamics and control of tuberculosis,” Science, vol. 328, no. 5980, pp. 856–861, 2010. View at Google Scholar
  2. World Health Organization, Global Tuberculosis Control. A Short Update to the 2009 Report, WHO, Geneva, Switzerland, 2009, http://www.who.int/tb/publications/global_report/2009/update/tbu_9.pdf.
  3. C. Dye, S. Scheele, P. Dolin, V. Pathania, and M. C. Raviglione, “Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project,” Journal Of the American Medical Association, vol. 282, no. 7, pp. 677–1021, 1999. View at Google Scholar
  4. United Nations, The Millenium Development Goals Report 2008, United Nations, New York, NY, USA, 2008, http://www.un.org/millenniumgoals.
  5. E. L. Corbett, C. J. Watt, N. Walker et al., “The growing burden of tuberculosis: global trends and interactions with the HIV epidemic,” Archives of Internal Medicine, vol. 163, no. 9, pp. 1009–1021, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Wei, S. K. Ghosh, M. E. Taylor et al., “Viral dynamics in human immunodeficiency virus type 1 infection,” Nature, vol. 373, no. 6510, pp. 117–122, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. D. D. Ho, A. U. Neumann, A. S. Perelson, W. Chen, J. M. Leonard, and M. Markowitz, “Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection,” Nature, vol. 373, no. 6510, pp. 123–126, 1995. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Pai, A. Zwerling, and D. Menzies, “Systematic review: T-cell-based assays for the diagnosis of latent tuberculosis infection: an update,” Annals of Internal Medicine, vol. 149, no. 3, pp. 177–184, 2008. View at Google Scholar · View at Scopus
  9. D. B. Young, H. P. Gideon, and R. J. Wilkinson, “Eliminating latent tuberculosis,” Trends in Microbiology, vol. 17, no. 5, pp. 183–188, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. C. E. Barry Jr., H. I. Boshoff, V. Dartois et al., “The spectrum of latent tuberculosis: rethinking the biology and intervention strategies,” Nature Reviews Microbiology, vol. 7, no. 12, pp. 845–855, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Wallgren, “The time-table of tuberculosis,” Tubercle, vol. 29, no. 11, pp. 245–251, 1948. View at Google Scholar · View at Scopus
  12. K. A. Wilkinson, H. J. Wilkinson, A. Pathan et al., “Ex vivo characterization of early secretory antigenic target 6-specific T cells at sites of active disease in pleural tuberculosis,” Clinical Infectious Diseases, vol. 40, no. 1, pp. 184–187, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Sarrazin, K. A. Wilkinson, J. Andersson et al., “Association between tuberculin skin test reactivity, the memory CD4 cell subset, and circulating FoxP3-expressing cells in HIV-infected persons,” Journal of Infectious Diseases, vol. 199, no. 5, pp. 702–710, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. J. Smieja, C. A. Marchetti, D. J. Cook, and F. M. Smaill, “Isoniazid for preventing tuberculosis in non-HIV infected persons,” Cochrane Database of Systematic Reviews, no. 2, Article ID CD001363, 2000. View at Google Scholar · View at Scopus
  15. V. N. Houk, D. C. Kent, K. Sorensen, and J. H. Baker, “The eradication of tuberculosis infection by isoniazid chemoprophylaxis,” Archives of Environmental Health, vol. 16, no. 1, pp. 46–50, 1968. View at Google Scholar · View at Scopus
  16. World Health Organization, Treatment of Tuberculosis: Guidelines, WHO, Geneva, Switzerland, 4th edition, 2010, WHO/HTM/TB/2009.420.
  17. R. Wood, K. Middelkoop, L. Myer et al., “Undiagnosed tuberculosis in a community with high HIV prevalence: implications for tuberculosis control,” American Journal of Respiratory and Critical Care Medicine, vol. 175, no. 1, pp. 87–93, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. E. L. Corbett, A. Zezai, Y. B. Cheung et al., “Provider-initiated symptom screening for tuberculosis in Zimbabwe: diagnostic value and the effect of HIV status,” Bulletin of the World Health Organization, vol. 88, no. 1, pp. 13–21, 2010. View at Google Scholar
  19. N. B. Hoa, D. N. Sy, N. V. Nhung, E. W. Tiemersma, M. W. Borgdorff, and F. G. Cobelens, “National survey of tuberculosis prevalence in Viet Nam,” Bulletin of the World Health Organization, vol. 88, no. 4, pp. 273–280, 2010. View at Google Scholar
  20. E. L. Corbett, T. Bandason, Y. B. Cheung et al., “Epidemiology of tuberculosis in a high HIV prevalence population provided with enhanced diagnosis of symptomatic disease,” PLos Medicine, vol. 4, no. 1, article e22, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Samanich, J. T. Belisle, and S. Laal, “Homogeneity of antibody responses in tuberculosis patients,” Infection and Immunity, vol. 69, no. 7, pp. 4600–4609, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. M. L. Gennaro, M. Affouf, G. V. Kanaujia, P. N. Brusasca, B. Mangura, and L. Reichman, “Antibody markers of incident tuberculosis among HIV-infected adults in the USA: a historical prospective study,” International Journal of Tuberculosis and Lung Disease, vol. 11, no. 6, pp. 624–631, 2007. View at Google Scholar · View at Scopus
  23. A. Wanchu, Y. Dong, S. Sethi et al., “Biomarkers for clinical and incipient tuberculosis: performance in a TB-endemic country,” PLos One, vol. 3, no. 4, Article ID e2071, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. P. L. Lin, M. Rodgers, L. Smith et al., “Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model,” Infection and Immunity, vol. 77, no. 10, pp. 4631–4642, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. S. D. Lawn, S. T. Butera, and T. M. Shinnick, “Tuberculosis unleashed: the impact of human immunodeficiency virus infection on the host granulomatous response to Mycobacterium tuberculosis,” Microbes and Infection, vol. 4, no. 6, pp. 635–646, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. P. A. Selwyn, D. Hartel, V. A. Lewis et al., “A prospective study of the risk of tuberculosis among intravenous drug users with human immunodeficiency virus infection,” The New England Journal of Medicine, vol. 320, no. 9, pp. 545–550, 1989. View at Google Scholar · View at Scopus
  27. P. Sonnenberg, J. Murray, J. R. Glynn, S. Shearer, B. Kambashi, and P. Godfrey-Faussett, “HIV-1 and recurrence, relapse, and reinfection of tuberculosis after cure: a cohort study in South African mineworkers,” The Lancet, vol. 358, no. 9294, pp. 1687–1693, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Sonnenberg, J. R. Glynn, K. Fielding, J. Murray, P. Godfrey-Fausselt, and S. Shearer, “How soon after infection with HIV does the risk of tuberculosis start to increase? A retrospective cohort study in South African gold miners,” Journal of Infectious Diseases, vol. 191, no. 2, pp. 150–158, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. J. R. Glynn, J. Murray, A. Bester, G. Nelson, S. Shearer, and P. Sonnenberg, “Effects of duration of HIV infection and secondary tuberculosis transmission on tuberculosis incidence in the South African gold mines,” AIDS, vol. 22, no. 14, pp. 1859–1867, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. C. R. Diedrich, J. T. Mattila, E. Klein et al., “Reactivation of latent tuberculosis in cynomolgus macaques infected with SIV is associated with early peripheral T cell depletion and not virus load,” PLos One, vol. 5, no. 3, article e9611, 2010. View at Google Scholar
  31. S. D. Lawn and R. J. Wilkinson, “Primate model to study reactivation of TB associated with retroviral infection,” Future Virology, vol. 5, no. 4, pp. 391–395, 2010. View at Google Scholar
  32. M. Badri, D. Wilson, and R. Wood, “Effect of highly active antiretroviral therapy on incidence of tuberculosis in South Africa: a cohort study,” The Lancet, vol. 359, no. 9323, pp. 2059–2064, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. C. B. Holmes, R. Wood, M. Badri et al., “CD4 decline and incidence of opportunistic infections in Cape Town, South Africa: implications for prophylaxis and treatment,” Journal of Acquired Immune Deficiency Syndromes, vol. 42, no. 4, pp. 464–469, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Yazdanpanaha, G. Chênec, E. Losina et al., “Incidence of primary opportunistic infections in two human immunodeficiency virus-infected French clinical cohorts,” International Journal of Epidemiology, vol. 30, no. 4, pp. 864–871, 2001. View at Google Scholar · View at Scopus
  35. G. Antonucci, E. Girardi, M. C. Raviglione, and G. Ippolito, “A prospective cohort study. The Gruppo Italiano di Studio Tubercolosi e AIDS (GISTA),” Journal Of the American Medical Association, vol. 274, no. 2, pp. 143–148, 1995. View at Google Scholar · View at Scopus
  36. R. Wood, H. Liang, and H. Wu, “Changing prevalence of tuberculosis infection with increasing age in high-burden townships in South Africa,” International Journal of Tuberculosis & Lung Disease, vol. 14, no. 4, pp. 406–412, 2010. View at Google Scholar · View at Scopus
  37. A. M. Elliott, B. Halwiindi, R. J. Hayes et al., “The impact of human immunodeficiency virus on presentation and diagnosis of tuberculosis in a cohort study in Zambia,” Journal of Tropical Medicine and Hygiene, vol. 96, no. 1, pp. 1–11, 1993. View at Google Scholar · View at Scopus
  38. C. F. Gilks, R. J. Brindle, L. S. Otieno et al., “Extrapulmonary and disseminated tuberculosis in HIV-1-seropositive patients presenting to the acute medical services in Nairobi,” AIDS, vol. 4, no. 10, pp. 981–985, 1990. View at Google Scholar · View at Scopus
  39. S. D. Lawn, A. J. Evans, P. M. Sedgwick, and J. W. Acheampong, “Pulmonary tuberculosis: radiological features in West Africans coinfected with HIV,” British Journal of Radiology, vol. 72, pp. 339–344, 1999. View at Google Scholar · View at Scopus
  40. F. A. Post, R. Wood, and G. P. Pillay, “Pulmonary tuberculosis in HIV infection: radiographic appearance is related to CD4+ T-lymphocyte count,” Tubercle and Lung Disease, vol. 76, no. 6, pp. 518–521, 1995. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Getahun, M. Harrington, R. O'Brien, and P. Nunn, “Diagnosis of smear-negative pulmonary tuberculosis in people with HIV infection or AIDS in resource-constrained settings: informing urgent policy changes,” The Lancet, vol. 369, no. 9578, pp. 2042–2049, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. S. D. Lawn, D. J. Edwards, K. Kranzer, M. Vogt, L.-G. Bekker, and R. Wood, “Urine lipoarabinomannan assay for tuberculosis screening before antiretroviral therapy diagnostic yield and association with immune reconstitution disease,” AIDS, vol. 23, no. 14, pp. 1875–1880, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Shah, E. Variava, C. B. Holmes et al., “Diagnostic accuracy of a urine lipoarabinomannan test for tuberculosis in hospitalized patients in a high HIV prevalence setting,” Journal of Acquired Immune Deficiency Syndromes, vol. 52, no. 2, pp. 145–151, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Von Gottberg, L. Sacks, S. Machala, and L. Blumberg, “Utility of blood cultures and incidence of mycobacteremia in patients with suspected tuberculosis in a South African infectious disease referral hospital,” International Journal of Tuberculosis and Lung Disease, vol. 5, no. 1, pp. 80–86, 2001. View at Google Scholar · View at Scopus
  45. S. B. Lucas, A. Hounnou, C. Peacock et al., “The mortality and pathology of HIV infection in a West African city,” AIDS, vol. 7, no. 12, pp. 1569–1579, 1993. View at Google Scholar · View at Scopus
  46. S. B. Lucas, K. M. De Cock, A. Hounnou et al., “Contribution of tuberculosis to slim disease in Africa,” British Medical Journal, vol. 308, no. 6943, pp. 1531–1533, 1994. View at Google Scholar · View at Scopus
  47. F. S. Rana, M. P. Hawken, C. Mwachari et al., “Autopsy study of HIV-1-positive and HIV-1-negative adult medical patients in Nairobi, Kenya,” Journal of Acquired Immune Deficiency Syndromes, vol. 24, no. 1, pp. 23–29, 2000. View at Google Scholar · View at Scopus
  48. N. A. Ansari, A. H. Kombe, T. A. Kenyon et al., “Pathology and causes of death in a group of 128 predominantly HIV-positive patients in Botswana, 1997-1998,” International Journal of Tuberculosis and Lung Disease, vol. 6, no. 1, pp. 55–63, 2002. View at Google Scholar · View at Scopus
  49. R. A. M. Breen, C. J. Smith, I. Cropley, M. A. Johnson, and M. C. I. Lipman, “Does immune reconstitution syndrome promote active tuberculosis in patients receiving highly active antiretroviral therapy?” AIDS, vol. 19, no. 11, pp. 1201–1206, 2005. View at Google Scholar · View at Scopus
  50. S. D. Lawn, L.-G. Bekker, and R. F. Miller, “Immune reconstitution disease associated with mycobacterial infections in HIV-infected individuals receiving antiretrovirals,” The Lancet Infectious Diseases, vol. 5, no. 6, pp. 361–373, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. G. Meintjes, S. D. Lawn, F. Scano et al., “Tuberculosis-associated immune reconstitution inflammatory syndrome: case definitions for use in resource-limited settings,” The Lancet Infectious Diseases, vol. 8, no. 8, pp. 516–523, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. S. D. Lawn, R. J. Wilkinson, M. C. Lipman, and R. Wood, “Immune reconstitution disease associated with mycobacterial infections in HIV-infected individuals receiving antiretrovirals,” American Journal of Respiratory and Critical Care Medicine, vol. 117, no. 7, pp. 680–685, 2008. View at Google Scholar
  53. S. D. Lawn, L. Myer, D. Edwards, L.-G. Bekker, and R. Wood, “Short-term and long-term risk of tuberculosis associated with CD4 cell recovery during antiretroviral therapy in South Africa,” AIDS, vol. 23, no. 13, pp. 1717–1725, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. S. D. Lawn, K. Kranzer, D. J. Edwards, M. McNally, L. G. Bekker, and R. Wood, “Tuberculosis during the first year of antiretroviral therapy in a South African cohort using an intensive pretreatment screening strategy,” AIDS, vol. 24, no. 9, pp. 1323–1328, 2010. View at Google Scholar
  55. H. Getahun, “Meta-analysis to inform the development of a standardised approach for TB screening in HIV-infected patients,” in Proceedings of the 40th Union World Conference on Lung Health, Cancun, Mexico, December 2009.
  56. K. Kranzer, R. M. Houben, J. R. Glynn, L. G. Bekker, R. Wood, and R. Lawn, “Yield of HIV-associated tuberculosis during intensified case finding in resource-limited settings: a systematic review and meta-analysis,” The Lancet Infectious Diseases, vol. 10, no. 2, pp. 93–102, 2010. View at Google Scholar
  57. L. Mtei, M. Matee, O. Herfort et al., “High rates of clinical and subclinical tuberculosis among HIV-infected ambulatory subjects in Tanzania,” Clinical Infectious Diseases, vol. 40, no. 10, pp. 1500–1507, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. N. N. Bock, P. A. Jensen, B. Miller, and E. Nardell, “Tuberculosis infection control in resource-limited settings in the era of expanding HIV care and treatment,” Journal of Infectious Diseases, vol. 196, supplement 1, pp. S108–S113, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. I. Bassett, S. Chetty, B. Wang et al., “Intensive TB screening for HIV-infected patients ready to start ART in Durban, South Africa: limitations of WHO guidelines,” in Proceedings of the 16th Conference on Retroviruses and Opportunistic Infections, Montreal, Canada, February 2009, Abstract no. 779.
  60. M. D. Perkins and J. Cunningham, “Facing the crisis: improving the diagnosis of tuberculosis in the HIV era,” Journal of Infectious Diseases, vol. 196, no. 1, pp. S15–S27, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. D. Helb, M. Jones, E. Story et al., “Rapid detection of Mycobacterium tuberculosis and rifampin resistance by use of on-demand, near-patient technology,” Journal of Clinical Microbiology, vol. 48, no. 1, pp. 229–237, 2010. View at Google Scholar
  62. C. C. Boehme, P. Nabeta, D. Hillemenn et al., “Rapid molecular detection of tuberculosis and rifapicin resistance,” The New England Journal of Medicine, vol. 363, no. 11, pp. 1005–1015, 2010. View at Google Scholar
  63. R. S. Wallis, M. Pai, D. Menzies et al., “Biomarkers and diagnostics for tuberculosis: progress, needs, and translation into practice,” The Lancet, vol. 375, no. 9729, pp. 1920–1937, 2010. View at Google Scholar
  64. T. M. Doherty, R. S. Wallis, and A. Zumla, “Biomarkers of disease activity, cure, and relapse in tuberculosis,” Clinics in Chest Medicine, vol. 30, no. 4, pp. 783–796, 2009. View at Google Scholar
  65. M. P. Berry, C. M. Graham, F. W. McNab et al., “An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis,” Nature, vol. 466, no. 7309, pp. 973–977, 2010. View at Google Scholar
  66. World Health Organization, Improving the Diagnosis and Treatment of Smear-Negative Pulmonary and Extra-Pulmonary Tuberculosis Among Adults and Adolescents. Recommendations for HIV-Prevalent and Resource-Constrained Settings, WHO, Geneva, Switzerland, 2007, WHO/HTM/2007.379 & WHO/HIV/2007.1, http://whqlibdoc.who.int/hq/2007/WHO_HTM_TB_2007.379_eng.pdf.
  67. World Health Organization, Global Tuberculosis Programme and UNAIDS. Policy Statement on Preventive Therapy Against Tuberculosis in People Living with HIV, WHO, Geneva, Switzerland, 1998, WHO/TB/98.255 UNAIDS/98.34, http://whqlibdoc.who.int/hq/1998/WHO_TB_98.255.pdf.
  68. World Health Organization, Global Tuberculosis Control 2009. Epidemiology, Strategy, Financing, World Health Organization, Geneva, Switzerland, 2009, WHO/HTM/TB/2009.411.
  69. M. J. Reid and N. S. Shah, “Approaches to tuberculosis screening and diagnosis in people with HIV in resource-limited settings,” The Lancet Infectious Diseases, vol. 9, no. 3, pp. 173–184, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. S. D. Lawn, R. Wood, K. M. De Cock, K. Kranzer, J. J. Lewis, and G. J. Churchyard, “Antiretrovirals and isoniazid preventive therapy in the prevention of HIV-associated tuberculosis in settings with limited health-care resources,” The Lancet Infectious Diseases, vol. 10, no. 7, pp. 489–798, 2010. View at Google Scholar · View at Scopus
  71. M. E. Balcells, S. L. Thomas, P. Godfrey-Faussett, and A. D. Grant, “Isoniazid preventive therapy and risk for resistant tuberculosis,” Emerging Infectious Diseases, vol. 12, no. 5, pp. 744–751, 2006. View at Google Scholar · View at Scopus
  72. S. D. Lawn, K. Kranzer, and R. Wood, “Antiretroviral therapy for control of the HIV-associated tuberculosis epidemic in resource-limited settings,” Clinics in Chest Medicine, vol. 30, no. 4, pp. 685–699, 2009. View at Google Scholar · View at Scopus
  73. B. Autran, G. Carcelain, T. S. Li et al., “Positive effects of combined antiretroviral therapy on CD4+ T cell homeostasis and function in advanced HIV disease,” Science, vol. 277, no. 5322, pp. 112–116, 1997. View at Publisher · View at Google Scholar · View at Scopus
  74. T. S. Li, R. Tubiana, C. Katlama, V. Calvez, H. A. Mohand, and B. Autran, “Long-lasting recovery in CD4 T-cell function and viral-load reduction after highly active antiretroviral therapy in advanced HIV-1 disease,” The Lancet, vol. 351, no. 9117, pp. 1682–1686, 1998. View at Publisher · View at Google Scholar · View at Scopus
  75. T. Wendland, H. Furrer, P. L. Vernazza et al., “HAART in HIV-infected patients: restoration of antigen-specific CD4 T-cell responses in vitro is correlated with CD4 memory T-cell reconstitution, whereas improvement in delayed type hypersensitivity is related to a decrease in viraemia,” AIDS, vol. 13, no. 14, pp. 1857–1862, 1999. View at Publisher · View at Google Scholar · View at Scopus
  76. N. W. Schluger, D. Perez, and Y. M. Liu, “Reconstitution of immune responses to tuberculosis in patients with HIV infection who receive antiretroviral therapy,” Chest, vol. 122, no. 2, pp. 597–602, 2002. View at Publisher · View at Google Scholar · View at Scopus
  77. S.-M. Hsieh, C.-C. Hung, S.-C. Pan et al., “Restoration of cellular immunity against tuberculosis in patients coinfected with HIV-1 and tuberculosis with effective antiretroviral therapy: assessment by determination of CD69 expression on T cells after tuberculin stimulation,” Journal of Acquired Immune Deficiency Syndromes, vol. 25, no. 3, pp. 212–220, 2000. View at Google Scholar · View at Scopus
  78. S. D. Lawn, M. Badri, and R. Wood, “Tuberculosis among HIV-infected patients receiving HAART: long term incidence and risk factors in a South African cohort,” AIDS, vol. 19, no. 18, pp. 2109–2116, 2005. View at Google Scholar · View at Scopus
  79. S. D. Lawn, L. Myer, L.-G. Bekker, and R. Wood, “Burden of tuberculosis in an antiretroviral treatment programme in sub-Saharan Africa: impact on treatment outcomes and implications for tuberculosis control,” AIDS, vol. 20, no. 12, pp. 1605–1612, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. P. Nahid, L. C. Gonzalez, I. Rudoy et al., “Treatment outcomes of patients with HIV and tuberculosis,” American Journal of Respiratory and Critical Care Medicine, vol. 175, no. 11, pp. 1199–1206, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. J. E. Golub, V. Saraceni, S. C. Cavalcante et al., “The impact of antiretroviral therapy and isoniazid preventive therapy on tuberculosis incidence in HIV-infected patients in Rio de Janeiro, Brazil,” AIDS, vol. 21, no. 11, pp. 1441–1448, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. T. Samandari, “Preliminary results of the Botswana isoniazid preventive therapy (IPT) clinical trial,” in Proceedings of the 40th Union World Conference on Lung Health, Cancun, Mexico, December 2009.