Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2012, Article ID 160724, 21 pages
http://dx.doi.org/10.1155/2012/160724
Review Article

Lung Cancer: A Classic Example of Tumor Escape and Progression While Providing Opportunities for Immunological Intervention

1Research Service, VA Long Beach Healthcare System, 5901 E. 7th Street, Long Beach, CA 90822, USA
2Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
3Chao Family Comprehensive Cancer Center, UC Irvine School of Medicine, University of California, Irvine, Orange, CA 92868, USA
4Health Care Group, Department of Diagnostic and Molecular Medicine, Pathology and Laboratory Medicine Service, VA Long Beach Healthcare System, 5901 East 7th Street, Box 113, Long Beach, CA 90822, USA

Received 7 March 2012; Revised 29 April 2012; Accepted 30 April 2012

Academic Editor: Nejat Egilmez

Copyright © 2012 Martin R. Jadus et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. M. Prins, H. Soto, V. Konkankit et al., “Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy,” Clinical Cancer Research, vol. 17, no. 6, pp. 1603–1615, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. J. L. Gulley and C. G. Drake, “Immunotherapy for prostate cancer: recent advances, lessons learned, and areas for further research,” Clinical Cancer Research, vol. 17, no. 12, pp. 3884–3891, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. S. S. Hecht, “Tobacco smoke carcinogens and lung cancer,” Journal of the National Cancer Institute, vol. 91, no. 14, pp. 1194–1210, 1999. View at Google Scholar · View at Scopus
  4. J. G. Paez, P. A. Jänne, J. C. Lee et al., “EGFR mutations in lung, cancer: correlation with clinical response to gefitinib therapy,” Science, vol. 304, no. 5676, pp. 1497–1500, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Kosaka, Y. Yatabe, H. Endoh, H. Kuwano, T. Takahashi, and T. Mitsudomi, “Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications,” Cancer Research, vol. 64, no. 24, pp. 8919–8923, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. D. W. S. Wong, E. L. H. Leung, K. K. T. So et al., “The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS,” Cancer, vol. 115, no. 8, pp. 1723–1733, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Inamura, K. Takeuchi, Y. Togashi et al., “EML4-ALK lung cancers are characterized by rare other mutations, a TTF-1 cell lineage, an acinar histology, and young onset,” Modern Pathology, vol. 22, no. 4, pp. 508–515, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Sun, J. H. Schiller, and A. F. Gazdar, “Lung cancer in never smokers—a different disease,” Nature Reviews Cancer, vol. 7, no. 10, pp. 778–790, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Ruffini, S. Asioli, P. L. Filosso et al., “Clinical Significance of Tumor-Infiltrating Lymphocytes in Lung Neoplasms,” Annals of Thoracic Surgery, vol. 87, no. 2, pp. 365–372, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Bao, Q. Wu, R. E. McLendon et al., “Glioma stem cells promote radioresistance by preferential activation of the DNA damage response,” Nature, vol. 444, no. 7120, pp. 756–760, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Liu, X. Yuan, Z. Zeng et al., “Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma,” Molecular Cancer, vol. 5, article 67, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Bertolini, L. Roz, P. Perego et al., “Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 38, pp. 16281–16286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. E. M. Hurt and W. L. Farrar, “Purification and characterization of cancer stem cells,” in Cancer Stem Cells, pp. 1–14, Cambridge University Press, Cambridge, Mass, USA, 2009. View at Google Scholar
  14. C. Lagadec, E. Vlashi, L. D. Donna et al., “Survival and self-renewing capacity of breast cancer initiating cells during fractionated radiation treatment,” Breast Cancer Research, vol. 12, no. 1, article R13, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Ambrosini, C. Adida, and D. C. Altieri, “A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma,” Nature Medicine, vol. 3, no. 8, pp. 917–921, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. R. M. Apolinario, P. van der Valk, J. S. De Jong et al., “Prognostic value of the expression of p53, bcl-2, and box oncoproteins, and neovascularization in patients with radically resected non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 15, no. 6, pp. 2456–2466, 1997. View at Google Scholar · View at Scopus
  17. F. Pezzella, H. Turley, I. Kuzu et al., “bcl-2 Protein in non-small-cell lung carcinoma,” The New England Journal of Medicine, vol. 329, no. 10, pp. 690–694, 1993. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Hariu, Y. Hirohashi, T. Torigoe et al., “Aberrant expression and potency as a cancer immunotherapy target of inhibitor of apoptosis protein family, Livin/ML-IAP in lung cancer,” Clinical Cancer Research, vol. 11, no. 3, pp. 1000–1009, 2005. View at Google Scholar · View at Scopus
  19. E. Brambilla, A. Negoescu, S. Gazzeri et al., “Apoptosis-related factors p53, Bcl2, and Bax in neuroendocrine lung tumors,” American Journal of Pathology, vol. 149, no. 6, pp. 1941–1952, 1996. View at Google Scholar · View at Scopus
  20. R. A. Olie, A. P. Simões-Wüst, B. Baumann et al., “A novel antisense oligonucleotide targeting survivin expression induces apoptosis and sensitizes lung cancer cells to chemotherapy,” Cancer Research, vol. 60, no. 11, pp. 2805–2809, 2000. View at Google Scholar · View at Scopus
  21. M. Monzó, R. Rosell, E. Felip et al., “A novel anti-apoptosis gene: re-expression of survivin messenger RNA as a prognosis marker in non-small-cell lung cancers,” Journal of Clinical Oncology, vol. 17, no. 7, pp. 2100–2104, 1999. View at Google Scholar · View at Scopus
  22. A. Fine, Y. Janssen-Heininger, R. P. Soultanakis, S. G. Swisher, and B. D. Uhal, “Apoptosis in lung pathophysiology,” American Journal of Physiology, vol. 279, no. 3, pp. L423–L427, 2000. View at Google Scholar · View at Scopus
  23. B. Joseph, R. Lewensohn, and B. Zhivotovsky, “Role of apoptosis in the response of lung carcinomas to anti-cancer treatment,” Annals of the New York Academy of Sciences, vol. 926, no. 1, pp. 204–216, 2000. View at Google Scholar · View at Scopus
  24. K. Krysan, H. Dalwadi, S. Sharma, M. Põld, and S. M. Dubinett, “Cyclooxygenase 2-dependent expression of survivin is critical for apoptosis resistance in non-small cell lung cancer,” Cancer Research, vol. 64, no. 18, pp. 6359–6362, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Sheng, J. Shao, J. D. Morrow, R. D. Beauchamp, and R. N. DuBois, “Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells,” Cancer Research, vol. 58, no. 2, pp. 362–366, 1998. View at Google Scholar · View at Scopus
  26. B. Joseph, J. Ekedahl, F. Sirzen, R. Lewensohn, and B. Zhivotovsky, “Differences in expression of pro-caspases in small cell and non-small cell lung carcinoma,” Biochemical and Biophysical Research Communications, vol. 262, no. 2, pp. 381–387, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Shivapurkar, J. Reddy, H. Matta et al., “Loss of expression of death-inducing signaling complex (DISC) components in lung cancer cell lines and the influence of MYC amplification,” Oncogene, vol. 21, no. 55, pp. 8510–8514, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Shivapurkar, S. Toyooka, M. T. Eby et al., “Differential inactivation of caspase-8 in lung cancers,” Cancer Biology and Therapy, vol. 1, no. 1, pp. 65–69, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Brambilla, S. Gazzeri, S. Lantuejoul et al., “p53 mutant immunophenotype and deregulation of p53 transcription pathway (Bcl2, Bax, and Waf1) in precursor bronchial lesions of lung cancer,” Clinical Cancer Research, vol. 4, no. 7, pp. 1609–1618, 1998. View at Google Scholar · View at Scopus
  30. S. Zöchbauer-Müller, A. F. Gazdar, and J. D. Minna, “Molecular pathogenesis of lung cancer,” Annual Review of Physiology, vol. 64, pp. 681–708, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Pelosi, F. Pasini, C. O. Stenholm et al., “p63 immunoreactivity in lung cancer: yet another player in the development of squamous cell carcinomas?” Journal of Pathology, vol. 198, no. 1, pp. 100–109, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. M. B. Schabath, X. Wu, Q. Wei, G. Li, J. Gu, and M. R. Spitz, “Combined effects of the p53 and p73 polymorphisms on lung cancer risk,” Cancer Epidemiology Biomarkers and Prevention, vol. 15, no. 1, pp. 158–161, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. R. N. Barker, L. P. Erwig, W. P. Pearce, A. Devine, and A. J. Rees, “Differential effects of necrotic or apoptotic cell uptake on antigen presentation by macrophages,” Pathobiology, vol. 67, no. 5-6, pp. 302–305, 2000. View at Google Scholar · View at Scopus
  34. R. E. Voll, M. Herrmann, E. A. Roth, C. Stach, J. R. Kalden, and I. Girkontaite, “Immunosuppressive effects of apoptotic cells,” Nature, vol. 390, no. 6658, pp. 350–351, 1997. View at Publisher · View at Google Scholar · View at Scopus
  35. R. M. Steinman, S. Turley, I. Mellman, and K. Inaba, “The induction of tolerance by dendritic cells that have captured apoptotic cells,” Journal of Experimental Medicine, vol. 191, no. 3, pp. 411–416, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. B. Sauter, M. L. Albert, L. Francisco, M. Larsson, S. Somersan, and N. Bhardwaj, “Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells,” Journal of Experimental Medicine, vol. 191, no. 3, pp. 423–433, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. V. A. Fadok, D. L. Bratton, A. Konowal, P. W. Freed, J. Y. Westcott, and P. M. Henson, “Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β, PGE2, and PAF,” Journal of Clinical Investigation, vol. 101, no. 4, pp. 890–898, 1998. View at Google Scholar · View at Scopus
  38. C. Fonseca and G. Dranoff, “Capitalizing on the immunogenicity of dying tumor cells,” Clinical Cancer Research, vol. 14, no. 6, pp. 1603–1608, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Ullrich, M. Bonmort, G. Mignot, G. Kroemer, and L. Zitvogel, “Tumor stress, cell death and the ensuing immune response,” Cell Death and Differentiation, vol. 15, no. 1, pp. 21–28, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. O. Kepp, L. Galluzzi, I. Martins et al., “Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy,” Cancer and Metastasis Reviews, vol. 30, no. 1, pp. 61–69, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. L. C. Young, B. G. Campling, S. P. C. Cole, R. G. Deeley, and J. H. Gerlach, “Multidrug resistance proteins MRP3, MRP1, and MRP2 in lung cancer: correlation of protein levels with drug response and messenger RNA levels,” Clinical Cancer Research, vol. 7, no. 6, pp. 1798–1804, 2001. View at Google Scholar · View at Scopus
  42. L. C. Young, B. G. Campling, T. Voskoglou-Nomikos, S. P. C. Cole, R. G. Deeley, and J. H. Gerlach, “Expression of multidrug resistance protein-related genes in lung cancer: correlation with drug response,” Clinical Cancer Research, vol. 5, no. 3, pp. 673–680, 1999. View at Google Scholar · View at Scopus
  43. C. M. Mahaffey, N. C. Mahaffey, W. Holland et al., “Aberrant regulation of the MRP3 gene in non-small cell lung carcinoma,” Journal of Thoracic Oncology, vol. 7, no. 1, pp. 34–39, 2012. View at Google Scholar
  44. N. Triller, P. Korošec, I. Kern, M. Košnik, and A. Debeljak, “Multidrug resistance in small cell lung cancer: expression of P-glycoprotein, multidrug resistance protein 1 and lung resistance protein in chemo-naive patients and in relapsed disease,” Lung Cancer, vol. 54, no. 2, pp. 235–240, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. J. P. Sullivan, M. Spinola, M. Dodge et al., “Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling,” Cancer Research, vol. 70, no. 23, pp. 9937–9948, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. C. E. Griguer, C. R. Oliva, E. Gobin et al., “CD133 is a marker of bioenergetic stress in human glioma,” PLoS ONE, vol. 3, no. 11, article e3655, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. J. M. Angelastro and M. W. Lamé, “Overexpression of CD133 promotes drug resistance in C6 glioma cells,” Molecular Cancer Research, vol. 8, no. 8, pp. 1105–1115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Hirschmann-Jax, A. E. Foster, G. G. Wulf et al., “A distinct “side population” of cells with high drug efflux capacity in human tumor cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 39, pp. 14228–14233, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. T. L. McLemore, W. C. Hubbard, C. L. Litterst et al., “Profiles of prostaglandin biosynthesis in normal lung and tumor tissue from lung cancer patients,” Cancer Research, vol. 48, no. 11, pp. 3140–3147, 1988. View at Google Scholar · View at Scopus
  50. C. D. Funk, “Prostaglandins and leukotrienes: advances in eicosanoid biology,” Science, vol. 294, no. 5548, pp. 1871–1875, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. Cao and S. M. Prescott, “Many actions of cyclooxygenase-2 in cellular dynamics and in cancer,” Journal of Cellular Physiology, vol. 190, no. 3, pp. 279–286, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. H. Wolff, K. Saukkonen, S. Anttila, A. Karjalainen, H. Vainio, and A. Ristimäki, “Expression of cyclooxygenase-2 in human lung carcinoma,” Cancer Research, vol. 58, no. 22, pp. 4997–5001, 1998. View at Google Scholar · View at Scopus
  53. D. M. Schreinemachers and R. B. Everson, “Aspirin use and lung, colon, and breast cancer incidence in a prospective study,” Epidemiology, vol. 5, no. 2, pp. 138–146, 1994. View at Google Scholar · View at Scopus
  54. A. N. Hata and R. M. Breyer, “Pharmacology and signaling of prostaglandin receptors: multiple roles in inflammation and immune modulation,” Pharmacology and Therapeutics, vol. 103, no. 2, pp. 147–166, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. L. Yang, N. Yamagata, R. Yadav et al., “Cancer-associated immunodefidency and dendritic cell abnormalities mediated by the prostaglandin EP2 receptor,” Journal of Clinical Investigation, vol. 111, no. 5, pp. 727–735, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. J. I. Kim, V. Lakshmikanthan, N. Frilot, and Y. Daaka, “Prostaglandin E2 promotes lung cancer cell migration via EP4-β/Arrestin1-c-Src signalsome,” Molecular Cancer Research, vol. 8, no. 4, pp. 569–577, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Dohadwala, R. K. Batra, J. Luo et al., “Autocrine/paracrine prostaglandin E2 production by non-small cell lung cancer cells regulates matrix metalloproteinase-2 and CD44 in cyclooxygenase-2-dependent invasion,” The Journal of Biological Chemistry, vol. 277, no. 52, pp. 50828–50833, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Dohadwala, J. Luo, L. Zhu et al., “Non-small cell lung cancer cyclooxygenase-2-dependent invasion is mediated by CD44,” The Journal of Biological Chemistry, vol. 276, no. 24, pp. 20809–20812, 2001. View at Publisher · View at Google Scholar · View at Scopus
  59. K. Krysan, K. L. Reckamp, H. Dalwadi et al., “Prostaglandin E2 activates mitogen-activated protein kinase/Erk pathway signaling and cell proliferation in non-small cell lung cancer cells in an epidermal growth factor receptor-independent manner,” Cancer Research, vol. 65, no. 14, pp. 6275–6281, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. J. Watson, “The influence of intracellular levels of cyclic nucleotides on cell proliferation and the induction of antibody synthesis,” Journal of Experimental Medicine, vol. 141, no. 1, pp. 97–111, 1975. View at Google Scholar · View at Scopus
  61. G. M. Kammer, “The adenylate cyclase-cAMP-protein kinase A pathway and regulation of the immune response,” Immunology Today, vol. 9, no. 7-8, pp. 222–229, 1988. View at Google Scholar · View at Scopus
  62. M. Huang, S. Sharma, J. T. Mao, and S. M. Dubinett, “Non-small cell lung cancer-derived soluble mediators and prostaglandin E2 enhance peripheral blood lymphocyte IL-10 transcription and protein production,” Journal of Immunology, vol. 157, no. 12, pp. 5512–5520, 1996. View at Google Scholar · View at Scopus
  63. M. Huang, M. Stolina, S. Sharma et al., “Non-small cell lung cancer cyclooxygenase-2-dependent regulation of cytokine balance in lymphocytes and macrophages: up-regulation of interleukin 10 and down-regulation of interleukin 12 production,” Cancer Research, vol. 58, no. 6, pp. 1208–1216, 1998. View at Google Scholar · View at Scopus
  64. S. Sharma, M. Stolina, Y. Lin et al., “T cell-derived IL-10 promotes lung cancer growth by suppressing both T cell and APC function,” Journal of Immunology, vol. 163, no. 9, pp. 5020–5028, 1999. View at Google Scholar · View at Scopus
  65. D. Miotto, N. Lo Cascio, M. Stendardo et al., “CD8+ T cells expressing IL-10 are associated with a favourable prognosis in lung cancer,” Lung Cancer, vol. 69, no. 3, pp. 355–360, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Mocellin, F. M. Marincola, and H. A. Young, “Interleukin-10 and the immune response against cancer: a counterpoint,” Journal of Leukocyte Biology, vol. 78, no. 5, pp. 1043–1051, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. M. V. Lopez, S. K. Adris, A. I. Bravo, Y. Chernajovsky, and O. L. Podhajcer, “IL-12 and IL-10 expression synergize to induce the immune-mediated eradication of established colon and mammary tumors and lung metastasis,” Journal of Immunology, vol. 175, no. 9, pp. 5885–5894, 2005. View at Google Scholar · View at Scopus
  68. M. Huang, J. Wang, P. Lee et al., “Human non-small cell lung cancer cells express a type 2 cytokine pattern,” Cancer Research, vol. 55, no. 17, pp. 3847–3853, 1995. View at Google Scholar · View at Scopus
  69. S. R. Pine, L. E. Mechanic, L. Enewold et al., “Increased levels of circulating interleukin 6, interleukin 8, c-reactive protein, and risk of lung cancer,” Journal of the National Cancer Institute, vol. 103, no. 14, pp. 1112–1122, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. E. Wójcik, J. Jakubowicz, P. Skotnicki, B. Sas-Korczyńska, and J. K. Kulpa, “IL-6 and VEGF in small cell lung cancer patients,” Anticancer Research, vol. 30, no. 5, pp. 1773–1778, 2010. View at Google Scholar · View at Scopus
  71. P. Salven, T. Ruotsalainen, K. Mattson, and H. Joensuu, “High pre-treatment serum level of vascular endothelial growth factor (VEGF) is associated with poor outcome in small-cell lung cancer,” International Journal of Cancer, vol. 79, no. 2, pp. 144–146, 1998. View at Google Scholar
  72. P. Salven, H. Mäenpää, A. Orpana, K. Alitalo, and H. Joensuu, “Serum vascular endothelial growth factor is often elevated in disseminated cancer,” Clinical Cancer Research, vol. 3, no. 5, pp. 647–651, 1997. View at Google Scholar · View at Scopus
  73. T. Kajita, Y. Ohta, K. Kimura et al., “The expression of vascular endothelial growth factor C and its receptors in non-small cell lung cancer,” British Journal of Cancer, vol. 85, no. 2, pp. 255–260, 2001. View at Publisher · View at Google Scholar · View at Scopus
  74. P. Delmotte, B. Martin, M. Paesmans et al., “The role of vascular endothelial growth factor in the survival of patients with lung cancer: a systematic literature review and meta-analysis,” Revue des Maladies Respiratoires, vol. 19, no. 5, pp. 577–584, 2002. View at Google Scholar · View at Scopus
  75. M. Volm, R. Koomägi, and J. Mattern, “Prognostic value of vascular endothelial growth factor and its receptor Flt-1 in squamous cell lung cancer,” International Journal of Cancer, vol. 74, no. 1, pp. 64–68, 1997. View at Google Scholar
  76. S. Tanno, Y. Ohsaki, K. Nakanishi, E. Toyoshima, and K. Kikuchi, “Human small cell lung cancer cells express functional VEGF receptors, VEGFR-2 and VEGFR-3,” Lung Cancer, vol. 46, no. 1, pp. 11–19, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. D. I. Gabrilovich, H. L. Chen, K. R. Girgis et al., “Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells,” Nature Medicine, vol. 2, no. 10, pp. 1096–1103, 1996. View at Publisher · View at Google Scholar · View at Scopus
  78. S. J. Lee, S. Y. Lee, H. S. Jeon et al., “Vascular endothelial growth factor gene polymorphisms and risk of primary lung cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 14, no. 3, pp. 571–575, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. B. Bierie and H. L. Moses, “Tumour microenvironment—TGFβ: the molecular Jekyll and Hyde of cancer,” Nature Reviews Cancer, vol. 6, no. 7, pp. 506–520, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. G. J. Prud'homme, “Pathobiology of transforming growth factor β in cancer, fibrosis and immunologic disease, and therapeutic considerations,” Laboratory Investigation, vol. 87, no. 11, pp. 1077–1091, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. Y. Hasegawa, S. Takanashi, Y. Kanehira et al., “Transforming growth factor-beta1 level correlates with angiogenesis, tumor progression, and prognosis in patients with nonsmall cell lung carcinoma,” Cancer, vol. 91, no. 5, pp. 964–971, 2001. View at Google Scholar
  82. S. B. Jakowlew, A. Mathias, P. Chung, and T. W. Moody, “Expression of transforming growth factor β ligand and receptor messenger RNAs in lung cancer cell lines,” Cell Growth and Differentiation, vol. 6, no. 4, pp. 465–476, 1995. View at Google Scholar · View at Scopus
  83. S. Hougaard, P. Nørgaard, N. Abrahamsen, H. L. Moses, M. Spang-Thomsen, and H. S. Poulsen, “Inactivation of the transforming growth factor β type II receptor in human small cell lung cancer cell lines,” British Journal of Cancer, vol. 79, no. 7-8, pp. 1005–1011, 1999. View at Publisher · View at Google Scholar · View at Scopus
  84. L. Damstrup, K. Rygaard, M. Spang-Thomsen, and H. S. Poulsen, “Expression of transforming growth factor β (TGFβ) receptors and expression of TGFβ1, TGFβ2 and TGFβ3 in human small cell lung cancer cell lines,” British Journal of Cancer, vol. 67, no. 5, pp. 1015–1021, 1993. View at Google Scholar · View at Scopus
  85. T. K. Kim, E. K. Mo, C. G. Yoo et al., “Alteration of cell growth and morphology by overexpression of transforming growth factor β type II receptor in human lung adenocarcinoma cells,” Lung Cancer, vol. 31, no. 2-3, pp. 181–191, 2001. View at Publisher · View at Google Scholar · View at Scopus
  86. R. R. de Jonge, L. Garrigue-Antar, V. F. Vellucci, and M. Reiss, “Frequent inactivation of the transforming growth factor β type ii receptor in small-cell lung carcinoma cells,” Oncology Research, vol. 9, no. 2, pp. 89–98, 1997. View at Google Scholar · View at Scopus
  87. S. B. Jakowlew, A. Mathias, P. Chung, and T. W. Moody, “Expression of transforming growth factor β ligand and receptor messenger RNAs in lung cancer cell lines,” Cell Growth and Differentiation, vol. 6, no. 4, pp. 465–476, 1995. View at Google Scholar · View at Scopus
  88. J. R. Fischer, H. Darjes, H. Lahm, M. Schindel, P. Drings, and P. H. Krammer, “Constitutive secretion of bioactive transforming growth factor β1 by small cell lung cancer cell lines,” European Journal of Cancer Part A, vol. 30, no. 14, pp. 2125–2129, 1994. View at Google Scholar · View at Scopus
  89. J. J. Letterio and A. B. Roberts, “Regulation of immune responses by TGF-β,” Annual Review of Immunology, vol. 16, pp. 137–161, 1998. View at Publisher · View at Google Scholar · View at Scopus
  90. H. G. Kang, M. H. Chae, J. M. Park et al., “Polymorphisms in TGF-β1 gene and the risk of lung cancer,” Lung Cancer, vol. 52, no. 1, pp. 1–7, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. S. Sharma, S. C. Yang, L. Zhu et al., “Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+CD25+ T regulatory cell activities in lung cancer,” Cancer Research, vol. 65, no. 12, pp. 5211–5220, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. P. Sinha, V. K. Clements, A. M. Fulton, and S. Ostrand-Rosenberg, “Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells,” Cancer Research, vol. 67, no. 9, pp. 4507–4513, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. A. Hamaï, P. Pignon, I. Raimbaud et al., “Human TH17 immune cells specific for the tumor antigen MAGE-A3 convert to IFN-γ secreting cells as they differentiate into effector T cells in vivo,” Cancer Research, vol. 72, no. 5, pp. 1–5, 2012. View at Google Scholar
  94. S. Z. Ben-Sasson, J. Hu-Li, J. Quiel et al., “IL-1 acts directly on CD4 T cells to enhance their antigen-driven expansion and differentiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 17, pp. 7119–7124, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. W. W. Lee, S. W. Kang, J. Choi et al., “Regulating human Th17 cells via differential expression of IL-1 receptor,” Blood, vol. 115, no. 3, pp. 530–540, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. K. Boniface, K. S. Bak-Jensen, Y. Li et al., “Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling,” Journal of Experimental Medicine, vol. 206, no. 3, pp. 535–548, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. C. Chizzolini, R. Chicheportiche, M. Alvarez et al., “Prostaglandin E2 synergistically with interleukin-23 favors human Th17 expansion,” Blood, vol. 112, no. 9, pp. 3696–3703, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. N. Martin-Orozco, P. Muranski, Y. Chung et al., “T helper 17 cells promote cytotoxic T cell activation in tumor immunity,” Immunity, vol. 31, no. 5, pp. 787–798, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. Y. Ji and W. Zhang, “Th17 cells: positive or negative role in tumor?” Cancer Immunology, Immunotherapy, vol. 59, no. 7, pp. 979–987, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. P. P. Ho and L. Steinman, “The aryl hydrocarbon receptor: a regulator of Th17 and Treg cell development in disease,” Cell Research, vol. 18, no. 6, pp. 605–608, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. C. A. Martey, C. J. Baglole, T. A. Gasiewicz, P. J. Sime, and R. P. Phipps, “The aryl hydrocarbon receptor is a regulator of cigarette smoke induction of the cyclooxygenase and prostaglandin pathways in human lung fibroblasts,” American Journal of Physiology, vol. 289, no. 3, pp. L391–L399, 2005. View at Publisher · View at Google Scholar · View at Scopus
  102. J. T. Chang, H. Chang, P. H. Chen, S. L. Lin, and P. Lin, “Requirement of aryl hydrocarbon receptor overexpression for CYP1B1 up-regulation and cell growth in human lung adenocarcinomas,” Clinical Cancer Research, vol. 13, no. 1, pp. 38–45, 2007. View at Publisher · View at Google Scholar · View at Scopus
  103. C. J. Baglole, S. B. Maggirwar, T. A. Gasiewicz, T. H. Thatcher, R. P. Phipps, and P. J. Sime, “The aryl hydrocarbon receptor attenuates tobacco smoke-induced cyclooxygenase-2 and prostaglandin production in lung fibroblasts through regulation of the NF-κB family member RelB,” The Journal of Biological Chemistry, vol. 283, no. 43, pp. 28944–28957, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. N. T. Nguyen, A. Kimura, T. Nakahama et al., “Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 46, pp. 19961–19966, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. K. Mahnke, K. Schönfeld, S. Fondel et al., “Depletion of CD4+CD25+ human regulatory T cells in vivo: kinetics of Treg depletion and alterations in immune functions in vivo and in vitro,” International Journal of Cancer, vol. 120, no. 12, pp. 2723–2733, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. S. G. Zheng, J. H. Wang, J. D. Gray, H. Soucier, and D. A. Horwitz, “Natural and induced CD4+CD25+ cells educate CD4+CD25 cells to develop suppressive activity: the role of IL-2, TGF-β, and IL-10,” Journal of Immunology, vol. 172, no. 9, pp. 5213–5221, 2004. View at Google Scholar · View at Scopus
  107. R. P. Petersen, M. J. Campa, J. Sperlazza et al., “Tumor infiltrating FOXP3+ regulatory T-cells are associated with recurrence in pathologic stage I NSCLC patients,” Cancer, vol. 107, no. 12, pp. 2866–2872, 2006. View at Publisher · View at Google Scholar · View at Scopus
  108. C. A. Granville, R. M. Memmott, and A. Balogh, “A central role for Foxp3+ regulatory T cells in K-Ras-driven lung tumorigenesis,” Plos ONE, vol. 4, no. 3, article e5061, 2009. View at Publisher · View at Google Scholar
  109. E. Y. Woo, H. Yeh, C. S. Chu et al., “Cutting edge: regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation,” Journal of Immunology, vol. 168, no. 9, pp. 4272–4276, 2002. View at Google Scholar · View at Scopus
  110. E. Y. Woo, C. S. Chu, T. J. Goletz et al., “Regulatory CD4+CD25+ T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer,” Cancer Research, vol. 61, no. 12, pp. 4766–4772, 2001. View at Google Scholar · View at Scopus
  111. M. D. Sharma, D. Y. Hou, Y. Liu et al., “Indoleamine 2,3-dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes,” Blood, vol. 113, no. 24, pp. 6102–6111, 2009. View at Publisher · View at Google Scholar · View at Scopus
  112. S. Löb, A. Königsrainer, D. Zieker et al., “IDO1 and IDO2 are expressed in human tumors: levo- but not dextro-1-methyl tryptophan inhibits tryptophan catabolism,” Cancer Immunology, Immunotherapy, vol. 58, no. 1, pp. 153–157, 2009. View at Publisher · View at Google Scholar · View at Scopus
  113. C. Uyttenhove, L. Pilotte, I. Théate et al., “Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase,” Nature Medicine, vol. 9, no. 10, pp. 1269–1274, 2003. View at Publisher · View at Google Scholar · View at Scopus
  114. G. C. Prendergast, “Immune escape as a fundamental trait of cancer: focus on IDO,” Oncogene, vol. 27, no. 28, pp. 3889–3900, 2008. View at Publisher · View at Google Scholar · View at Scopus
  115. J. V. Karanikas, M. Zamanakou, T. Kerenidi et al., “Indoleamine 2,3-dioxygenase (IDO) expression in lung cancer,” Cancer Biology and Therapy, vol. 6, no. 8, pp. 1258–1262, 2007. View at Google Scholar · View at Scopus
  116. M. Friberg, R. Jennings, M. Alsarraj et al., “Indoleamine 2,3-dioxygenase contributes to tumor cell evasion of T cell-mediated rejection,” International Journal of Cancer, vol. 101, no. 2, pp. 151–155, 2002. View at Publisher · View at Google Scholar · View at Scopus
  117. S. Astigiano, B. Morandi, R. Costa et al., “Eosinophil granulocytes account for indoleamine 2,3-dioxygenase-mediated immune escape in human non-small cell lung cancer,” Neoplasia, vol. 7, no. 4, pp. 390–396, 2005. View at Publisher · View at Google Scholar · View at Scopus
  118. D. R. Leach, M. F. Krummel, and J. P. Allison, “Enhancement of antitumor immunity by CTLA-4 blockade,” Science, vol. 271, no. 5256, pp. 1734–1736, 1996. View at Google Scholar · View at Scopus
  119. A. J. Montero, C. M. Diaz-Montero, C. E. Kyriakopoulos et al., “Myeloid-derived suppressor cells in cancer patients: a clinical perspective,” Journal of Immunotherapy, vol. 35, no. 2, pp. 107–115, 2012. View at Google Scholar
  120. D. I. Gabrilovich and S. Nagaraj, “Myeloid-derived suppressor cells as regulators of the immune system,” Nature Reviews Immunology, vol. 9, no. 3, pp. 162–174, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. S. Ostrand-Rosenberg and P. Sinha, “Myeloid-derived suppressor cells: linking inflammation and cancer,” Journal of Immunology, vol. 182, no. 8, pp. 4499–4506, 2009. View at Publisher · View at Google Scholar · View at Scopus
  122. M. R. Jadus and R. Parkman, “The selective growth of murine newborn-derived suppressor cells and their probable mode of action,” Journal of Immunology, vol. 136, no. 3, pp. 783–792, 1986. View at Google Scholar · View at Scopus
  123. P. C. Rodriguez, C. P. Hernandez, D. Quiceno et al., “Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma,” Journal of Experimental Medicine, vol. 202, no. 7, pp. 931–939, 2005. View at Publisher · View at Google Scholar · View at Scopus
  124. D. Pardoll and C. Drake, “Immunotherapy earns its spot in the ranks of cancer therapy,” Journal of Experimental Medicine, vol. 209, no. 2, pp. 201–209, 2012. View at Google Scholar
  125. J. E. Talmadge, K. C. Hood, L. C. Zobel, L. R. Shafer, M. Coles, and B. Toth, “Chemoprevention by cyclooxygenase-2 inhibition reduces immature myeloid suppressor cell expansion,” International Immunopharmacology, vol. 7, no. 2, pp. 140–151, 2007. View at Publisher · View at Google Scholar · View at Scopus
  126. S. Brandau, S. Trellakis, K. Bruderek et al., “Myeloid-derived suppressor cells in the peripheral blood of cancer patients contain a subset of immature neutrophils with impaired migratory properties,” Journal of Leukocyte Biology, vol. 89, no. 2, pp. 311–317, 2011. View at Publisher · View at Google Scholar · View at Scopus
  127. Y. Liu, J. A. Van Ginderachter, L. Brys, P. De Baetselier, G. Raes, and A. B. Geldhof, “Nitric oxide-independent CTL suppression during tumor progression: association with arginase-producing (M2) myeloid cells,” Journal of Immunology, vol. 170, no. 10, pp. 5064–5074, 2003. View at Google Scholar · View at Scopus
  128. I. M. Corraliza, G. Soler, K. Eichmann, and M. Modolell, “Arginase induction by suppressors of nitric oxide synthesis (IL-4, IL-10 and PGE2) in murine bone-marrow-derived macrophages,” Biochemical and Biophysical Research Communications, vol. 206, no. 2, pp. 667–673, 1995. View at Publisher · View at Google Scholar · View at Scopus
  129. A. C. Ochoa, A. H. Zea, C. Hernandez, and P. C. Rodriguez, “Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma,” Clinical Cancer Research, vol. 13, no. 2, pp. 721s–726s, 2007. View at Publisher · View at Google Scholar · View at Scopus
  130. M. Modolell, I. M. Corraliza, F. Link, G. Soler, and K. Eichmann, “Reciprocal regulation of the nitric oxide synthase-arginase balance in mouse bone marrow-derived macrophages by TH1 and TH2 cytokines,” European Journal of Immunology, vol. 25, no. 4, pp. 1101–1104, 1995. View at Google Scholar · View at Scopus
  131. N. Umemura, M. Saio, T. Suwa et al., “Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics,” Journal of Leukocyte Biology, vol. 83, no. 5, pp. 1136–1144, 2008. View at Publisher · View at Google Scholar · View at Scopus
  132. K. L. Choi, T. Maier, J. H. Holda, and H. N. Claman, “Suppression of cytotoxic T-cell generation by natural suppressor cells from mice with GVHD is partially reserved by indomethacin,” Cellular Immunology, vol. 112, no. 2, pp. 271–278, 1988. View at Google Scholar · View at Scopus
  133. T. Baba, T. Hanagiri, Y. Ichiki et al., “Lack and restoration of sensitivity of lung cancer cells to cellular attack with special reference to expression of human leukocyte antigen class I and/or major histocompatibility complex class I chain related molecules A/B,” Cancer Science, vol. 98, no. 11, pp. 1795–1802, 2007. View at Publisher · View at Google Scholar · View at Scopus
  134. A. Doyle, W. J. Martin, K. Funa et al., “Markedly decreased expression of class I histocompatibility antigens, protein, and mRNA in human small-cell lung cancer,” Journal of Experimental Medicine, vol. 161, no. 5, pp. 1135–1151, 1985. View at Google Scholar · View at Scopus
  135. D. P. Singal, M. Ye, and X. Qiu, “Molecular basis for lack of expression of HLA class I antigens in human small-cell lung carcinoma cell lines,” International Journal of Cancer, vol. 68, no. 5, pp. 629–636, 1996. View at Google Scholar
  136. H. L. Chen, D. Gabrilovich, A. Virman et al., “Structural and functional analysis of β2 microglobulin abnormalities in human lung and breast cancer,” International Journal of Cancer, vol. 67, no. 6, pp. 756–763, 1996. View at Google Scholar
  137. H. L. Chen, D. Gabrilovich, R. Tampé, K. R. Girgis, S. Nadaf, and D. P. Carbone, “A functionally defective allele of TAP1 results in loss of MHC class I antigen presentation in a human lung cancer,” Nature Genetics, vol. 13, no. 2, pp. 210–213, 1996. View at Publisher · View at Google Scholar · View at Scopus
  138. A. Johnsen, J. France, M. S. Sy, and C. V. Harding, “Down-regulation of the transporter for antigen presentation, proteasome subunits, and class I major histocompatibility complex in tumor cell lines,” Cancer Research, vol. 58, no. 16, pp. 3660–3667, 1998. View at Google Scholar · View at Scopus
  139. M. R. Ruff, W. L. Farrar, and C. B. Pert, “Interferon γ and granulocyte/macrophage colony-stimulating factor inhibit growth and induce antigens characteristic of myeloid differentiation in small-cell lung cancer cell lines,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 17, pp. 6613–6617, 1986. View at Google Scholar · View at Scopus
  140. C. Traversari, R. Meazza, M. Coppolecchia et al., “IFN-γ gene transfer restores HLA-class I expression and MAGE-3 antigen presentation to CTL in HLA-deficient small cell lung cancer,” Gene Therapy, vol. 4, no. 10, pp. 1029–1035, 1997. View at Google Scholar · View at Scopus
  141. G. M. Marley, L. A. Doyle, J. V. Ordonez, A. Sisk, A. Hussain, and R. W. Chiu Yen, “Potentiation of interferon induction of class I major histocompatibility complex antigen expression of human tumor necrosis factor in small cell lung cancer cell lines,” Cancer Research, vol. 49, no. 22, pp. 6232–6236, 1989. View at Google Scholar · View at Scopus
  142. C. Garrido, I. Romero, E. Berruguilla et al., “Immunotherapy eradicates metastases with reversible defects in MHC class I expression,” Cancer Immunology, Immunotherapy, vol. 60, no. 9, pp. 1257–1268, 2011. View at Publisher · View at Google Scholar · View at Scopus
  143. E. Kikuchi, K. Yamazaki, E. Nakayama et al., “Prolonged survival of patients with lung adenocarcinoma expressing XAGE-1b and HLA class I antigens,” Cancer Immunity, vol. 8, article 13, 2008. View at Google Scholar · View at Scopus
  144. F. Aladin, G. Lautscham, E. Humphries, J. Coulson, and N. Blake, “Targeting tumour cells with defects in the MHC Class I antigen processing pathway with CD8+ T cells specific for hydrophobic TAP- and Tapasin-independent peptides: the requirement for directed access into the ER,” Cancer Immunology, Immunotherapy, vol. 56, no. 8, pp. 1143–1152, 2007. View at Publisher · View at Google Scholar · View at Scopus
  145. E. Kikuchi, K. Yamazaki, T. Torigoe et al., “HLA class I antigen expression is associated with a favorable prognosis in early stage non-small cell lung cancer,” Cancer Science, vol. 98, no. 9, pp. 1424–1430, 2007. View at Publisher · View at Google Scholar · View at Scopus
  146. N. Rouas-Freiss, P. Moreau, S. Ferrone, and E. D. Carosella, “HLA-G proteins in cancer: do they provide tumor cells with an escape mechanism?” Cancer Research, vol. 65, no. 22, pp. 10139–10144, 2005. View at Publisher · View at Google Scholar · View at Scopus
  147. G. Pietra, C. Romagnani, C. Manzini, L. Moretta, and M. C. Mingari, “The emerging role of HLA-E-restricted CD8+ T lymphocytes in the adaptive immune response to pathogens and tumors,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 907092, 8 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  148. A. Lin, X. Zhang, Y. Y. Ruan, Q. Wang, W. J. Zhou, and W. H. Yan, “HLA-F expression is a prognostic factor in patients with non-small-cell lung cancer,” Lung Cancer, vol. 74, no. 3, pp. 504–509, 2011. View at Publisher · View at Google Scholar · View at Scopus
  149. C. Pangault, G. Le Friec, S. Caulet-Maugendre et al., “Lung macrophages and dendritic cells express HLA-G molecules in pulmonary diseases,” Human Immunology, vol. 63, no. 2, pp. 83–90, 2002. View at Publisher · View at Google Scholar · View at Scopus
  150. M. Urosevic, M. O. Kurrer, J. Kamarashev et al., “Human leukocyte antigen G up-regulation in lung cancer associates with high-grade histology, human leukocyte antigen class I loss and interleukin-10 production,” American Journal of Pathology, vol. 159, no. 3, pp. 817–824, 2001. View at Google Scholar · View at Scopus
  151. S. M. Yie, H. Yang, S. R. Ye, K. Li, D. D. Dong, and X. M. Lin, “Expression of human leucocyte antigen G (HLA-G) is associated with prognosis in non-small cell lung cancer,” Lung Cancer, vol. 58, no. 2, pp. 267–274, 2007. View at Publisher · View at Google Scholar
  152. P. Schütt, B. Schütt, M. Switala et al., “Prognostic relevance of soluble human leukocyte antigen-G and total human leukocyte antigen class I molecules in lung cancer patients,” Human Immunology, vol. 71, no. 5, pp. 489–495, 2010. View at Publisher · View at Google Scholar · View at Scopus
  153. V. Ristich, S. Liang, W. Zhang, J. Wu, and A. Horuzsko, “Tolerization of dendritic cells by HLA-G,” European Journal of Immunology, vol. 35, no. 4, pp. 1133–1142, 2005. View at Publisher · View at Google Scholar · View at Scopus
  154. M. Allard, R. Oger, V. Vignard et al., “Serum soluble HLA-E in Melanoma: a new potential immune-related marker in cancer,” PLoS ONE, vol. 6, no. 6, article e21118, 2011. View at Publisher · View at Google Scholar · View at Scopus
  155. S. Nagata, “Apoptosis by death factor,” Cell, vol. 88, no. 3, pp. 355–365, 1997. View at Publisher · View at Google Scholar · View at Scopus
  156. M. L. Janmaat, F. A. E. Kruyt, J. A. Rodriguez, and G. Giaccone, “Response to epidermal growth factor receptor inhibitors in non-small cell lung cancer cells: limited antiproliferative effects and absence of apoptosis associated with persistent activity of extracellular signal-regulated kinase or Akt kinase pathways,” Clinical Cancer Research, vol. 9, no. 6, pp. 2316–2326, 2003. View at Google Scholar · View at Scopus
  157. G. A. Niehans, T. Brunner, S. P. Frizelle et al., “Human lung carcinomas express Fas ligand,” Cancer Research, vol. 57, no. 6, pp. 1007–1012, 1997. View at Google Scholar · View at Scopus
  158. N. P. Restifo, “Not so Fas: re-evaluating the mechanisms of immune privilege and tumor escape,” Nature Medicine, vol. 6, no. 5, pp. 493–495, 2000. View at Publisher · View at Google Scholar · View at Scopus
  159. Y. Zhang, Q. Liu, M. Zhang, Y. Yu, X. Liu, and X. Cao, “Fas signal promotes lung cancer growth by recruiting myeloid-derived suppressor cells via cancer cell-derived PGE,” Journal of Immunology, vol. 182, no. 6, pp. 3801–3808, 2009. View at Publisher · View at Google Scholar · View at Scopus
  160. R. M. Pitti, S. A. Marsters, D. A. Lawrence et al., “Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer,” Nature, vol. 396, no. 6712, pp. 699–703, 1998. View at Publisher · View at Google Scholar · View at Scopus
  161. G. G. Gomez and C. A. Kruse, “Mechanisms of malignant glioma immune resistance and sources of immunosuppression,” Gene Therapy and Molecular Biology, vol. 10, no. 1, pp. 133–146, 2006. View at Google Scholar · View at Scopus
  162. M. J. Hickey, C. C. Malone, K. L. Erickson et al., “Cellular and vaccine therapeutic approaches for gliomas,” Journal of Translational Medicine, vol. 8, article 100, 2010. View at Google Scholar
  163. L. Ge, N. Hoa, D. A. Bota, J. Natividad, A. Howat, and M. R. Jadus, “Immunotherapy of brain cancers: the past, the present, and future directions,” Clinical and Developmental Immunology, vol. 2010, Article ID 296453, 19 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  164. D. L. Lamm, D. E. Thor, S. C. Harris et al., “Bacillus Calmette-Guerin immunotherapy of superficial bladder cancer,” Journal of Urology, vol. 124, no. 1, pp. 38–42, 1980. View at Google Scholar · View at Scopus
  165. J. W. Millar, P. Roscoe, and S. J. Pearce, “Five-year results of a controlled study of BCG immunotherapy after surgical resection in bronchogenic carcinoma,” Thorax, vol. 37, no. 1, pp. 57–60, 1982. View at Google Scholar · View at Scopus
  166. J. J. Patard, F. Saint, F. Velotti, C. C. Abbou, and D. K. Chopin, “Immune response following intravesical bacillus Calmette-Guerin instillations in superficial madder cancer: a review,” Urological Research, vol. 26, no. 3, pp. 155–159, 1998. View at Publisher · View at Google Scholar · View at Scopus
  167. H. M. Jansen, G. C. De Gast, and M. T. Esselink, “Adjuvant immunotherapy with BCG in squamous-cell bronchial carcinoma. Immunereactivity in relation to immunostimulation (preliminary results in a controlled trial),” Thorax, vol. 33, no. 4, pp. 429–438, 1978. View at Google Scholar · View at Scopus
  168. M. Kaufmann, J. Stjernsward, and A. Zimmermann, “Adverse effect of intrapleural Corynebacterium parvum as adjuvant therapy in resected Stage I and II non-small cell carcinoma of the lung,” Journal of Thoracic and Cardiovascular Surgery, vol. 89, no. 6, pp. 842–847, 1985. View at Google Scholar · View at Scopus
  169. M. E. R. O'Brien, H. Anderson, E. Kaukel et al., “SRL 172 (killed Mycobacterium vaccae) in addition to standard chemotherapy improves quality of life without affecting survival, in patients with advanced non-small-cell lung cancer: phase III results,” Annals of Oncology, vol. 15, no. 6, pp. 906–914, 2004. View at Publisher · View at Google Scholar · View at Scopus
  170. J. L. Stanford, C. A. Stanford, M. E. R. O'Brien, and J. M. Grange, “Successful immunotherapy with Mycobacterium vaccae in the treatment of adenocarcinoma of the lung,” European Journal of Cancer, vol. 44, no. 2, pp. 224–227, 2008. View at Publisher · View at Google Scholar · View at Scopus
  171. A. Hollinshead, T. H. M. Stewart, H. Takita, M. Dalbow, and J. Concannon, “Adjuvant specific active lung cancer immunotherapy trials. Tumor-associated antigens,” Cancer, vol. 60, no. 6, pp. 1249–1262, 1987. View at Google Scholar · View at Scopus
  172. A. Forero, R. F. Meredith, M. B. Khazaeli et al., “Phase I study of 90Y-CC49 monoclonal antibody therapy in patients with advanced non-small cell lung cancer: effect of chelating agents and paclitaxel co-administration,” Cancer Biotherapy and Radiopharmaceuticals, vol. 20, no. 5, pp. 467–478, 2005. View at Publisher · View at Google Scholar · View at Scopus
  173. S. C. Grant, M. G. Kris, A. N. Houghton, and P. B. Chapman, “Long survival of patients with small cell lung cancer after adjuvant treatment with the anti-idiotypic antibody BEC2 plus Bacillus Calmette- Guerin,” Clinical Cancer Research, vol. 5, no. 6, pp. 1319–1323, 1999. View at Google Scholar · View at Scopus
  174. A. M. Hernández, D. Toledo, D. Martínez et al., “Characterization of the antibody response against NeuGcGM3 ganglioside elicited in non-small cell lung cancer patients immunized with an anti-idiotype antibody,” Journal of Immunology, vol. 181, no. 9, pp. 6625–6634, 2008. View at Google Scholar · View at Scopus
  175. L. Arnould, M. Gelly, F. Penault-Llorca et al., “Trastuzumab-based treatment of HER2-positive breast cancer: an antibody-dependent cellular cytotoxicity mechanism?” British Journal of Cancer, vol. 94, no. 2, pp. 259–267, 2006. View at Publisher · View at Google Scholar · View at Scopus
  176. S. Shak, “Overview of the trastuzumab (Herceptin) anti-HER2 monoclonal antibody clinical program in HER2-overexpressing metastatic breast cancer,” Seminars in Oncology, vol. 26, no. 4, pp. 71–77, 1999. View at Google Scholar · View at Scopus
  177. E. A. Grimm, A. Mazumder, H. Z. Zhang, and S. A. Rosenberg, “Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes,” Journal of Experimental Medicine, vol. 155, no. 6, pp. 1823–1841, 1982. View at Google Scholar · View at Scopus
  178. S. A. Rosenberg, M. T. Lotze, L. M. Muul et al., “Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer,” The New England Journal of Medicine, vol. 313, no. 23, pp. 1485–1492, 1985. View at Google Scholar · View at Scopus
  179. S. A. Rosenberg, M. T. Lotze, J. C. Yang et al., “Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer,” Journal of the National Cancer Institute, vol. 85, no. 8, pp. 622–632, 1993. View at Google Scholar · View at Scopus
  180. M. Al-Moundhri, M. O'Brien, and B. E. Souberbielle, “Immunotherapy in lung cancer,” British Journal of Cancer, vol. 78, no. 3, pp. 282–288, 1998. View at Google Scholar · View at Scopus
  181. J. H. Schiller, C. Morgan-Ihrig, and M. L. Levitt, “Concomitant administration of interleukin-2 plus tumor necrosis factor in advanced non-small cell lung cancer,” American Journal of Clinical Oncology, vol. 18, no. 1, pp. 47–51, 1995. View at Google Scholar · View at Scopus
  182. M. Scudeletti, G. Filaci, M. A. Imro et al., “Immunotherapy with intralesional and systemic interleukin-2 of patients with non-small-cell lung cancer,” Cancer Immunology Immunotherapy, vol. 37, no. 2, pp. 119–124, 1993. View at Google Scholar · View at Scopus
  183. S. A. Rosenberg, P. Spiess, and R. Lafreniere, “A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes,” Science, vol. 233, no. 4770, pp. 1318–1321, 1986. View at Google Scholar · View at Scopus
  184. G. Melioli, G. B. Ratto, M. Ponte et al., “Treatment of stage IIIB non-small-cell lung cancer with surgery followed by infusion of tumor infiltrating lymphocytes and recombinant interleukin-2: a pilot study,” Journal of Immunotherapy, vol. 19, no. 3, pp. 224–230, 1996. View at Publisher · View at Google Scholar · View at Scopus
  185. M. Meta, M. Ponte, M. Gustella et al., “Detection of oligoclonal T lymphocytes in lymph nodes draining from advanced non-small cell lung cancer,” Cancer Immunology Immunotherapy, vol. 40, no. 4, pp. 235–240, 1995. View at Publisher · View at Google Scholar · View at Scopus
  186. M. E. Dudley, J. R. Wunderlich, J. C. Yang et al., “Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma,” Journal of Clinical Oncology, vol. 23, no. 10, pp. 2346–2357, 2005. View at Publisher · View at Google Scholar · View at Scopus
  187. L. Gattinoni, D. J. Powell Jr., S. A. Rosenberg, and N. P. Restifo, “Adoptive immunotherapy for cancer: building on success,” Nature Reviews Immunology, vol. 6, no. 5, pp. 383–393, 2006. View at Publisher · View at Google Scholar · View at Scopus
  188. P. Wrobel, H. Shojaei, B. Schittek et al., “Lysis of a broad range of epithelial tumour cells by human γδ T cells: involvement of NKG2D ligands and T-cell receptor- versus NKG2D-dependent recognition,” Scandinavian Journal of Immunology, vol. 66, no. 2-3, pp. 320–328, 2007. View at Publisher · View at Google Scholar · View at Scopus
  189. V. Groh, R. Rhinehart, H. Secrist, S. Bauer, K. H. Grabstein, and T. Spies, “Broad tumor-associated expression and recognition by tumor-derived γδ T cells of MICA and MICB,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 12, pp. 6879–6884, 1999. View at Publisher · View at Google Scholar · View at Scopus
  190. J. Nakajima, T. Murakawa, T. Fukami et al., “A phase I study of adoptive immunotherapy for recurrent non-small-cell lung cancer patients with autologous γδ T cells,” European Journal of Cardio-thoracic Surgery, vol. 37, no. 5, pp. 1191–1197, 2010. View at Publisher · View at Google Scholar · View at Scopus
  191. G. Dranoff, E. Jaffee, A. Lazenby et al., “Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 8, pp. 3539–3543, 1993. View at Google Scholar · View at Scopus
  192. R. Salgia, T. Lynch, A. Skarin et al., “Vaccination with irradiated autologous tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor augments antitumor immunity in some patients with metastatic non-small-cell lung carcinoma,” Journal of Clinical Oncology, vol. 21, no. 4, pp. 624–630, 2003. View at Publisher · View at Google Scholar · View at Scopus
  193. J. Nemunaitis, D. Sterman, D. Jablons et al., “Granulocyte-macrophage colony-stimulating factor gene-modified autologous tumor vaccines in non-small-cell lung cancer,” Journal of the National Cancer Institute, vol. 96, no. 4, pp. 326–331, 2004. View at Google Scholar · View at Scopus
  194. J. Nemunaitis, T. Jahan, H. Ross et al., “Phase 1/2 trial of autologous tumor mixed with an allogeneic GVAX vaccine in advanced-stage non-small-cell lung cancer,” Cancer Gene Therapy, vol. 13, no. 6, pp. 555–562, 2006. View at Publisher · View at Google Scholar · View at Scopus
  195. L. E. Raez, P. A. Cassileth, J. J. Schlesselman et al., “Allogeneic vaccination with a B7.1 HLA-A gene-modified adenocarcinoma cell line in patients with advanced non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 22, no. 14, pp. 2800–2807, 2004. View at Publisher · View at Google Scholar · View at Scopus
  196. H. Hörig, D. S. Lee, W. Conkright et al., “Phase I clinical trial of a recombinant canarypoxvirus (ALVAC) vaccine expressing human carcinoembryonic antigen and the B7.1 co-stimulatory molecule,” Cancer Immunology Immunotherapy, vol. 49, no. 9, pp. 504–514, 2000. View at Publisher · View at Google Scholar · View at Scopus
  197. R. A. Madan, M. Bilusic, J. W. Hodge et al., “A phase I trial of a yeast-based therapeutic cancer vaccine targeting CEA,” Journal of Clinical Oncology, vol. 29, supplement, abstract no. 2604, 2011. View at Google Scholar
  198. M. A. Hollingsworth and B. J. Swanson, “Mucins in cancer: protection and control of the cell surface,” Nature Reviews Cancer, vol. 4, no. 1, pp. 45–60, 2004. View at Google Scholar · View at Scopus
  199. R. Ramlau, E. Quoix, J. Rolski et al., “A phase II study of Tg4010 (Mva-Muc1-Il2) in association with chemotherapy in patients with stage III/IV non-small cell lung cancer,” Journal of Thoracic Oncology, vol. 3, no. 7, pp. 735–744, 2008. View at Publisher · View at Google Scholar · View at Scopus
  200. B. Acres, E. Quoix, R. Ramlau et al., “Biomarkers associated with clinical outcome in advanced non-small cell lung cancer patients treated with TG4010,” Journal of Clinical Oncology, vol. 27, no. 15, supplement, abstract no. 3027, 2009. View at Google Scholar
  201. P. van der Bruggen, V. Stroobant, N. Vigneron, and B. Van den Eynde, “Peptide database,” Cancer Immunity, http://www.cancerimmunity.org/peptidedatabase/Tcellepitopes.htm.
  202. M. Palmer, J. Parker, S. Modi et al., “Phase I study of the BLP25 (MUC1 peptide) liposomal vaccine for active specific immunotherapy in stage IIIB/IV non-small-cell lung cancer,” Clinical Lung Cancer, vol. 3, no. 1, pp. 49–57, 2001. View at Google Scholar · View at Scopus
  203. Y. Oji, S. Miyoshi, H. Maeda et al., “Overexpression of the Wilms' tumor gene WT1 in de novo lung cancers,” International Journal of Cancer, vol. 100, no. 3, pp. 297–303, 2002. View at Publisher · View at Google Scholar · View at Scopus
  204. Y. Oka, A. Tsuboi, T. Taguchi et al., “Induction of WT1 (Wilms' tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 38, pp. 13885–13890, 2004. View at Publisher · View at Google Scholar · View at Scopus
  205. S. Gomi, M. Nakao, F. Niiya et al., “A cyclophilin B gene encodes antigenic epitopes recognized by HLA-A24- restricted and tumor-specific CTLs,” Journal of Immunology, vol. 163, no. 9, pp. 4994–5004, 1999. View at Google Scholar · View at Scopus
  206. R. Gohara, N. Imai, T. Rikimaru et al., “Phase 1 clinical study of cyclophilin B peptide vaccine for patients with lung cancer,” Journal of Immunotherapy, vol. 25, no. 5, pp. 439–444, 2002. View at Publisher · View at Google Scholar · View at Scopus
  207. J. Vansteenkiste, M. Zielinski, A. Linder et al., “Final results of a multicenter, double-blind, randomized, placebo-controlled phase II study to assess the efficacy of MAGE-A3 immunotherapeutic as adjuvant therapy in stage IB/II non-small cell lung cancer,” Journal of Clinical Oncology, vol. 25, no. 18, supplement, abstract no. 7554, 2007. View at Google Scholar
  208. W. Sienel, C. Varwerk, A. Linder et al., “Melanoma associated antigen (MAGE)-A3 expression in Stages I and II non-small cell lung cancer: results of a multi-center study,” European Journal of Cardio-thoracic Surgery, vol. 25, no. 1, pp. 131–134, 2004. View at Publisher · View at Google Scholar · View at Scopus
  209. V. G. Brichard and D. Lejeune, “GSK's antigen-specific cancer immunotherapy programme: pilot results leading to Phase III clinical development,” Vaccine, vol. 25, no. 2, pp. B61–B71, 2007. View at Publisher · View at Google Scholar · View at Scopus
  210. M. Barve, J. Bender, N. Senzer et al., “Induction of immune responses and clinical efficacy in a phase II trial of IDM-2101, a 10-epitope cytotoxic T-lymphocyte vaccine, in metastatic non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 26, no. 27, pp. 4418–4425, 2008. View at Publisher · View at Google Scholar · View at Scopus
  211. S. V. Sharma, D. W. Bell, J. Settleman, and D. A. Haber, “Epidermal growth factor receptor mutations in lung cancer,” Nature Reviews Cancer, vol. 7, no. 3, pp. 169–181, 2007. View at Publisher · View at Google Scholar · View at Scopus
  212. G. Giaccone and J. A. Rodriguez, “EGFR inhibitors: what have we learned from the treatment of lung cancer?” Nature Clinical Practice Oncology, vol. 2, no. 11, pp. 554–561, 2005. View at Publisher · View at Google Scholar · View at Scopus
  213. E. N. Vinageras, A. de La Torre, M. O. Rodríguez et al., “Phase II randomized controlled trial of an epidermal growth factor vaccine in advanced non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 26, no. 9, pp. 1452–1458, 2008. View at Publisher · View at Google Scholar · View at Scopus
  214. G. González, T. Crombet, E. Neninger, C. Viada, and A. Lage, “Therapeutic vaccination with Epidermal Growth Factor (EGF) in advanced lung cancer: analysis of pooled data from three clinical trials,” Human Vaccines, vol. 3, no. 1, pp. 8–13, 2007. View at Google Scholar · View at Scopus
  215. S. J. Antonia, N. Mirza, I. Fricke et al., “Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer,” Clinical Cancer Research, vol. 12, no. 3, pp. 878–887, 2006. View at Publisher · View at Google Scholar · View at Scopus
  216. I. F. Ciernik, J. A. Berzofsky, and D. P. Carbone, “Human lung cancer cells endogenously expressing mutant p53 process and present the mutant epitope and are lysed by mutant-specific cytotoxic T lymphocytes,” Clinical Cancer Research, vol. 2, no. 5, pp. 877–882, 1996. View at Google Scholar · View at Scopus
  217. A. A. Chiappori, H. Soliman, W. E. Janssen, S. J. Antonia, and D. I. Gabrilovich, “INGN-225: a dendritic cell-based p53 vaccine (Ad.p53-DC) in small cell lung cancer: observed association between immune response and enhanced chemotherapy effect,” Expert Opinion on Biological Therapy, vol. 10, no. 6, pp. 983–991, 2010. View at Publisher · View at Google Scholar · View at Scopus
  218. E. A. Hirschowitz, T. Foody, R. Kryscio, L. Dickson, J. Sturgill, and J. Yannelli, “Autologous dendritic cell vaccines for non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 22, no. 14, pp. 2808–2815, 2004. View at Publisher · View at Google Scholar · View at Scopus
  219. E. A. Hirschowitz, T. Foody, G. E. Hidalgo, and J. R. Yannelli, “Immunization of NSCLC patients with antigen-pulsed immature autologous dendritic cells,” Lung Cancer, vol. 57, no. 3, pp. 365–372, 2007. View at Publisher · View at Google Scholar · View at Scopus
  220. Q. Zhou, A. L. Guo, C. R. Xu et al., “A dendritic cell-based tumour vaccine for lung cancer: full-length XAGE-1b protein-pulsed dendritic cells induce specific cytotoxic T lymphocytes in vitro,” Clinical and Experimental Immunology, vol. 153, no. 3, pp. 392–400, 2008. View at Publisher · View at Google Scholar · View at Scopus
  221. S. J. Um, Y. J. Choi, H. J. Shin et al., “Phase I study of autologous dendritic cell tumor vaccine in patients with non-small cell lung cancer,” Lung Cancer, vol. 70, no. 2, pp. 188–194, 2010. View at Publisher · View at Google Scholar · View at Scopus
  222. N. Chaput, N. E. C. Schartz, F. André et al., “Exosomes as potent cell-free peptide-based vaccine. II. Exosomes in CpG adjuvants efficiently prime naive Tc1 lymphocytes leading totumor rejection,” Journal of Immunology, vol. 172, no. 4, pp. 2137–2146, 2004. View at Google Scholar · View at Scopus
  223. E. Segura, S. Amigorena, and C. Théry, “Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses,” Blood Cells, Molecules, and Diseases, vol. 35, no. 2, pp. 89–93, 2005. View at Publisher · View at Google Scholar · View at Scopus
  224. L. Zitvogel, A. Regnault, A. Lozier et al., “Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes,” Nature Medicine, vol. 4, no. 5, pp. 594–600, 1998. View at Publisher · View at Google Scholar · View at Scopus
  225. S. Viaud, C. Théry, S. Ploix et al., “Dendritic cell-derived exosomes for cancer immunotherapy: what's next?” Cancer Research, vol. 70, no. 4, pp. 1281–1285, 2010. View at Publisher · View at Google Scholar · View at Scopus
  226. J. Nemunaitis, R. O. Dillman, P. O. Schwarzenberger et al., “Phase II study of belagenpumatucel-L, a transforming growth factor beta-2 antisense gene-modified allogeneic tumor cell vaccine in non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 24, no. 29, pp. 4721–4730, 2006. View at Publisher · View at Google Scholar · View at Scopus
  227. R. K. Jain, D. G. Duda, J. W. Clark, and J. S. Loeffler, “Lessons from phase III clinical trials on anti-VEGF therapy for cancer,” Nature Clinical Practice Oncology, vol. 3, no. 1, pp. 24–40, 2006. View at Publisher · View at Google Scholar · View at Scopus
  228. P. Tomasini, N. Khobta, L. Greillier, and F. Barlesi, “Ipilimumab: its potential in non-small cell lung cancer,” Therapeutic Advances in Medical Oncology, vol. 4, no. 2, pp. 43–50, 2012. View at Google Scholar
  229. F. S. Hodi, S. J. O'Day, D. F. McDermott et al., “Improved survival with ipilimumab in patients with metastatic melanoma,” The New England Journal of Medicine, vol. 363, no. 8, pp. 711–723, 2010. View at Publisher · View at Google Scholar · View at Scopus
  230. F. Hirano, K. Kaneko, H. Tamura et al., “Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity,” Cancer Research, vol. 65, no. 3, pp. 1089–1096, 2005. View at Google Scholar · View at Scopus
  231. H. Dong, S. E. Strome, D. R. Salomao et al., “Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion,” Nature Medicine, vol. 8, no. 8, pp. 793–800, 2002. View at Publisher · View at Google Scholar
  232. Y. Iwai, M. Ishida, Y. Tanaka, T. Okazaki, T. Honjo, and N. Minato, “Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 19, pp. 12293–12297, 2002. View at Publisher · View at Google Scholar · View at Scopus
  233. J. A. Brown, D. M. Dorfman, F. R. Ma et al., “Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production,” Journal of Immunology, vol. 170, no. 3, pp. 1257–1266, 2003. View at Google Scholar · View at Scopus
  234. J. Konishi, K. Yamazaki, M. Azuma, I. Kinoshita, H. Dosaka-Akita, and M. Nishimura, “B7-H1 expression on non-small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression,” Clinical Cancer Research, vol. 10, no. 15, pp. 5094–5100, 2004. View at Publisher · View at Google Scholar · View at Scopus
  235. I. Perrot, D. Blanchard, N. Freymond et al., “Dendritic cells infiltrating human non-small cell lung cancer are blocked at immature stage,” Journal of Immunology, vol. 178, no. 5, pp. 2763–2769, 2007. View at Google Scholar · View at Scopus
  236. Y. Sun, Y. Wang, J. Zhao et al., “B7-H3 and B7-H4 expression in non-small-cell lung cancer,” Lung Cancer, vol. 53, no. 2, pp. 143–151, 2006. View at Publisher · View at Google Scholar · View at Scopus
  237. I. H. Choi, G. Zhu, G. L. Sica et al., “Genomic Organization and Expression Analysis of B7-H4, an Immune Inhibitory Molecule of the B7 Family,” Journal of Immunology, vol. 171, no. 9, pp. 4650–4654, 2003. View at Google Scholar · View at Scopus
  238. J. Dannull, Z. Su, D. Rizzieri et al., “Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells,” Journal of Clinical Investigation, vol. 115, no. 12, pp. 3623–3633, 2005. View at Publisher · View at Google Scholar · View at Scopus
  239. A. J. Rech, R. Mick, A. Recio et al., “Phase I study of anti-CD25 mab daclizumab to deplete regulatory T cells prior to telomerase/survivin peptide vaccination in patients (pts) with metastatic breast cancer (MBC),” Journal of Clinical Oncology, vol. 28, no. 15, supplement, abstract no. 2508, 2010. View at Google Scholar