Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2012, Article ID 279206, 8 pages
http://dx.doi.org/10.1155/2012/279206
Research Article

Persistence of Diarrheal Pathogens Is Associated with Continued Recruitment of Plasmablasts in the Circulation

1Division of Infectious Diseases, Department of Medicine, Helsinki University Central Hospital, Aurora Hospital, Building 5, 3rd floor, POB 348, 00029 Helsinki, Finland
2Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, 00014 Helsinki, Finland
3Institute of Clinical Medicine, University of Helsinki, 00014 Helsinki, Finland

Received 1 July 2011; Revised 27 September 2011; Accepted 8 October 2011

Academic Editor: Daniel Mucida

Copyright © 2012 Anu Kantele. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Fagarasan and T. Honjo, “Intestinal IgA synthesis: regulation of front-line body defences,” Nature Reviews Immunology, vol. 3, no. 1, pp. 63–72, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. P. Brandtzaeg, “Update on mucosal immunoglobulin A in gastrointestinal disease,” Current Opinion in Gastroenterology, vol. 26, no. 6, pp. 554–563, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. H. Sigmundsdottir and E. C. Butcher, “Environmental cues, dendritic cells and the programming of tissue-selective lymphocyte trafficking,” Nature Immunology, vol. 9, no. 9, pp. 981–987, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. J. R. Mora and U. H. von Andrian, “Differentiation and homing of IgA-secreting cells,” Mucosal Immunology, vol. 1, no. 2, pp. 96–109, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. M. Salmi and S. Jalkanen, “Lymphocyte homing to the gut: attraction, adhesion, and commitment,” Immunological Reviews, vol. 206, pp. 100–113, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. E. J. Kunkel and E. C. Butcher, “Plasma-cell homing,” Nature Reviews Immunology, vol. 3, no. 10, pp. 822–829, 2003. View at Google Scholar · View at Scopus
  7. A. Kantele, H. Arvilommi, and I. Jokinen, “Specific immunoglobulin-secreting human blood cells after peroral vaccination against Salmonella typhi,” Journal of Infectious Diseases, vol. 153, no. 6, pp. 1126–1131, 1986. View at Google Scholar · View at Scopus
  8. A. Kantele, “Antibody-secreting cells in the evaluation of the immunogenicity of an oral vaccine,” Vaccine, vol. 8, no. 4, pp. 321–326, 1990. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Kantele, J. M. Kantele, E. Savilahti et al., “Homing potentials of circulating lymphocytes in humans depend on the site of activation: Oral, but not parenteral, typhoid vaccination induces circulating antibody-secreting cells that all bear homing receptors directing them to the gut,” Journal of Immunology, vol. 158, no. 2, pp. 574–579, 1997. View at Google Scholar · View at Scopus
  10. M. Quiding-Järbrink, I. Nordström, G. Granström et al., “Differential expression of tissue-specific adhesion molecules on human circulating antibody-forming cells after systemic, enteric, and nasal immunizations. A molecular basis for the compartmentalization of effector B cell responses,” Journal of Clinical Investigation, vol. 99, no. 6, pp. 1281–1286, 1997. View at Google Scholar · View at Scopus
  11. S. H. Pakkanen, J. M. Kantele, Z. Moldoveanu et al., “Expression of homing receptors on IgA1 and IgA2 plasmablasts in blood reflects differential distribution of IgA1 and IgA2 in various body fluids,” Clinical and Vaccine Immunology, vol. 17, no. 3, pp. 393–401, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. A. Kantele, M. Häkkinen, Z. Moldoveanu et al., “Differences in immune responses induced by oral and rectal immunizations with Salmonella typhi Ty21a: evidence for compartmentalization within the common mucosal immune system in humans,” Infection and Immunity, vol. 66, no. 12, pp. 5630–5635, 1998. View at Google Scholar · View at Scopus
  13. A. M. Kantele, R. Takanen, and H. Arvilommi, “Immune response to acute diarrhea seen as circulating antibody-secreting cells,” Journal of Infectious Diseases, vol. 158, no. 5, pp. 1011–1016, 1988. View at Google Scholar · View at Scopus
  14. J. M. Kantele, H. Arvilommi, S. Kontiainen et al., “Mucosally activated circulating human B cells in diarrhea express homing receptors directing them back to the gut,” Gastroenterology, vol. 110, no. 4, pp. 1061–1067, 1996. View at Publisher · View at Google Scholar · View at Scopus
  15. A. M. Gonzalez, M. C. Jaimes, I. Cajiao et al., “Rotavirus-specific B cells induced by recent infection in adults and children predominantly express the intestinal homing receptor α4β7,” Virology, vol. 305, no. 1, pp. 93–105, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. E. P. Bowman, N. A. Kuklin, K. R. Youngman et al., “The intestinal chemokine thymus-expressed chemokine (CCL25) attracts IgA antibody-secreting cells,” Journal of Experimental Medicine, vol. 195, no. 2, pp. 269–275, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Berlin, E. L. Berg, M. J. Briskin et al., “α4β7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1,” Cell, vol. 74, no. 1, pp. 185–195, 1993. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Kantele, “Peripheral blood antibody-secreting cells in the evaluation of the immune response to an oral vaccine,” Journal of Biotechnology, vol. 44, no. 1–3, pp. 217–224, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Kantele, N. Palkola, H. Arvilommi et al., “Local immune response to upper urinary tract infections in children,” Clinical and Vaccine Immunology, vol. 15, no. 3, pp. 412–417, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. A. M. Kantele, N. V. Palkola, H. S. Arvilommi, and J. M. Kantele, “Distinctive homing profile of pathogen-specific activated lymphocytes in human urinary tract infection,” Clinical Immunology, vol. 128, no. 3, pp. 427–434, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. A. Kantele, J. Zivny, M. Häkkinen, C. O. Elson, and J. Mestecky, “Differential homing commitments of antigen-specific T cells after oral or parenteral immunization in humans,” Journal of Immunology, vol. 162, no. 9, pp. 5173–5177, 1999. View at Google Scholar · View at Scopus
  22. I. J. Amanna, N. E. Carlson, and M. K. Slifka, “Duration of humoral immunity to common viral and vaccine antigens,” New England Journal of Medicine, vol. 357, no. 19, pp. 1903–1915, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. A. Kantele and P. H. Makela, “Different profiles of the human immune response to primary and secondary immunization with an oral Salmonella typhi Ty21a vaccine,” Vaccine, vol. 9, no. 6, pp. 423–427, 1991. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Kantele, “Immune response to prolonged intestinal exposure to antigen,” Scandinavian Journal of Immunology, vol. 33, no. 2, pp. 225–229, 1991. View at Google Scholar
  25. A. Kantele, M. Westerholm, J. M. Kantele, P. H. Mäkelä, and E. Savilahti, “Homing potentials of circulating antibody-secreting cells after administration of oral or parenteral protein or polysaccharide vaccine in humans,” Vaccine, vol. 17, no. 3, pp. 229–236, 1999. View at Publisher · View at Google Scholar
  26. C. Lue, A. Tarkowski, and J. Mestecky, “Systemic immunization with pneumococcal polysaccharide vaccine induces a predominant IgA2 response of peripheral blood lymphocytes and increases of both serum and secretory anti-pneumococcal antibodies,” Journal of Immunology, vol. 140, no. 11, pp. 3793–3800, 1988. View at Google Scholar
  27. R. J. Cox, K. A. Brokstad, M. A. Zuckerman, J. M. Wood, L. R. Haaheim, and J. S. Oxford, “An early humoral immune response in peripheral blood following parenteral inactivated influenza vaccination,” Vaccine, vol. 12, no. 11, pp. 993–999, 1994. View at Publisher · View at Google Scholar
  28. F. E. H. Lee, A. R. Falsey, J. L. Halliley, I. Sanz, and E. E. Walsh, “Circulating antibody-secreting cells during acute respiratory syncytial virus infection in adults,” Journal of Infectious Diseases, vol. 202, no. 11, pp. 1659–1666, 2010. View at Publisher · View at Google Scholar · View at PubMed
  29. T. Nieminen, H. Käyhty, and A. Kantele, “Circulating antibody secreting cells and humoral antibody response after parenteral immunization with a meningococcal polysaccharide vaccine,” Scandinavian Journal of Infectious Diseases, vol. 28, no. 1, pp. 53–58, 1996. View at Google Scholar
  30. T. M. P. T. Herremans, J. H. J. Reimerink, A. M. Buisman, T. G. Kimman, and M. P. G. Koopmans, “Induction of mucosal immunity by inactivated poliovirus vaccine is dependent on previous mucosal contact with live virus,” Journal of Immunology, vol. 162, no. 8, pp. 5011–5018, 1999. View at Google Scholar