Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2012, Article ID 370516, 10 pages
http://dx.doi.org/10.1155/2012/370516
Review Article

Epstein-Barr Virus and Systemic Lupus Erythematosus

Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Ørestads Boulevard 5, 2300 Copenhagen, Denmark

Received 20 February 2012; Revised 23 March 2012; Accepted 14 April 2012

Academic Editor: Anne Davidson

Copyright © 2012 Anette Holck Draborg et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. J. Pons-Estel, G. S. Alarcón, L. Scofield, L. Reinlib, and G. S. Cooper, “Understanding the epidemiology and progression of systemic lupus erythematosus,” Seminars in Arthritis and Rheumatism, vol. 39, no. 4, pp. 257–268, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Rahman and D. A. Isenberg, “Systemic lupus erythematosus,” New England Journal of Medicine, vol. 358, no. 9, pp. 929–939, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. P. P. Smith and C. Gordon, “Systemic lupus erythematosus: clinical presentations,” Autoimmunity Reviews, vol. 10, no. 1, pp. 43–45, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. M. C. Hochberg, “Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus,” Arthritis and rheumatism, vol. 40, no. 9, p. 1725, 1997. View at Google Scholar · View at Scopus
  5. B. Namjou, J. Kilpatrick, and J. B. Harley, “Genetics of clinical expression in SLE,” Autoimmunity, vol. 40, no. 8, pp. 602–612, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. C. A. Von Muhlen and E. M. Tan, “Autoantibodies in the diagnosis of systemic rheumatic diseases,” Seminars in Arthritis and Rheumatism, vol. 24, no. 5, pp. 323–358, 1995. View at Google Scholar · View at Scopus
  7. M. Dall'Era and E. F. Chakravarty, “Treatment of mild, moderate, and severe lupus erythematosus: focus on new therapies,” Current Rheumatology Reports, vol. 13, no. 4, pp. 308–316, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Deapen, A. Escalante, L. Weinrib et al., “A revised estimate of twin concordance in systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 35, no. 3, pp. 311–318, 1992. View at Google Scholar · View at Scopus
  9. A. L. Sestak, B. G. Fürnrohr, J. B. Harley, J. T. Merrill, and B. Namjou, “The genetics of systemic lupus erythematosus and implications for targeted therapy,” Annals of the Rheumatic Diseases, vol. 70, no. 1, pp. i37–i43, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. P. S. Ramos, A. H. Williams, J. T. Ziegler et al., “Genetic analyses of interferon pathway-related genes reveal multiple new loci associated with systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 63, no. 7, pp. 2049–2057, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. G. M. Kammer, A. Perl, B. C. Richardson, and G. C. Tsokos, “Review: abnormal T cell signal transduction in systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 46, no. 5, pp. 1139–1154, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Shah, W. W. Lee, S. H. Lee et al., “Dysregulated balance of Th17 and Th1 cells in systemic lupus erythematosus,” Arthritis Research and Therapy, vol. 12, no. 2, article no. R53, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. G. C. Tsokos, “Systemic lupus erythematosus,” New England Journal of Medicine, vol. 365, no. 22, pp. 2110–2121, 2011. View at Google Scholar
  14. U. S. Gaipl, L. E. Munoz, G. Grossmayer et al., “Clearance deficiency and systemic lupus erythematosus (SLE),” Journal of Autoimmunity, vol. 28, no. 2-3, pp. 114–121, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. L. E. Munoz, U. S. Gaipl, S. Franz et al., “SLE—a disease of clearance deficiency?” Rheumatology, vol. 44, no. 9, pp. 1101–1107, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. L. E. Muñoz, C. Janko, C. Schulze et al., “Autoimmunity and chronic inflammation—two clearance-related steps in the etiopathogenesis of SLE,” Autoimmunity Reviews, vol. 10, no. 1, pp. 38–42, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Truedsson, A. A. Bengtsson, and G. Sturfelt, “Complement deficiencies and systemic lupus erythematosus,” Autoimmunity, vol. 40, no. 8, pp. 560–566, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. L. E. Munoz, C. Van Bavel, S. Franz, J. Berden, M. Herrmann, and J. Van Der Vlag, “Apoptosis in the pathogenesis of systemic lupus erythematosus,” Lupus, vol. 17, no. 5, pp. 371–375, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. L. E. Mũoz, K. Lauber, M. Schiller, A. A. Manfredi, and M. Herrmann, “The role of defective clearance of apoptotic cells in systemic autoimmunity,” Nature Reviews Rheumatology, vol. 6, no. 5, pp. 280–289, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. P. J. Farrell, “Epstein-Barr virus. The B95-8 strain map,” Methods in Molecular Biology, vol. 174, pp. 3–12, 2001. View at Google Scholar · View at Scopus
  21. P. Sarzi-Puttini, F. Atzeni, L. Iaccarino, and A. Doria, “Environment and systemic lupus erythematosus: an overview,” Autoimmunity, vol. 38, no. 7, pp. 465–472, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Sarzi-Puttini, F. Atzeni, F. Capsoni, E. Lubrano, and A. Doria, “Drug-induced lupus erythematosus,” Autoimmunity, vol. 38, no. 7, pp. 507–518, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. C. D. Vedove, M. Del Giglio, D. Schena, and G. Girolomoni, “Drug-induced lupus erythematosus,” Archives of Dermatological Research, vol. 301, no. 1, pp. 99–105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. J. A. James, B. R. Neas, K. L. Moser et al., “Systemic lupus erythematosus in adults is associated with previous Epstein-Barr virus exposure,” Arthritis and Rheumatism, vol. 44, no. 5, pp. 1122–1126, 2001. View at Publisher · View at Google Scholar
  25. H. H. Niller, H. Wolf, and J. Minarovits, “Regulation and dysregulation of Epstein-Barr virus latency: implications for the development of autoimmune diseases,” Autoimmunity, vol. 41, no. 4, pp. 298–328, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Tsurumi, M. Fujita, and A. Kudoh, “Latent and lytic Epstein-Barr virus replication strategies,” Reviews in Medical Virology, vol. 15, no. 1, pp. 3–15, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. P. G. Auwaerter, “Infectious mononucleosis in middle age,” Journal of the American Medical Association, vol. 281, no. 5, pp. 454–459, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Tattevin, Y. Le Tulzo, S. Minjolle et al., “Increasing incidence of severe Epstein-Barr virus-related infectious mononucleosis: surveillance study,” Journal of Clinical Microbiology, vol. 44, no. 5, pp. 1873–1874, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. S. E. Straus, J. I. Cohen, G. Tosato, and J. Meier, “Epstein-Barr virus infections: biology, pathogenesis, and management,” Annals of Internal Medicine, vol. 118, no. 1, pp. 45–58, 1993. View at Google Scholar · View at Scopus
  30. B. A. Bagert, “Epstein-Barr virus in multiple sclerosis,” Current Neurology and Neuroscience Reports, vol. 9, no. 5, pp. 405–410, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. A. J. Gross, D. Hochberg, W. M. Rand, and D. A. Thorley-Lawson, “EBV and systemic lupus erythematosus: a new perspective,” Journal of Immunology, vol. 174, no. 11, pp. 6599–6607, 2005. View at Google Scholar · View at Scopus
  32. S. Haahr and P. Höllsberg, “Multiple sclerosis is linked to Epstein-Barr virus infection,” Reviews in Medical Virology, vol. 16, no. 5, pp. 297–310, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. I. Kang, T. Quan, H. Nolasco et al., “Defective control of latent Epstein-Barr virus infection in systemic lupus erythematosus,” Journal of Immunology, vol. 172, no. 2, pp. 1287–1294, 2004. View at Google Scholar · View at Scopus
  34. U. Y. Moon, S. J. Park, S. T. Oh et al., “Patients with systemic lupus erythematosus have abnormally elevated Epstein-Barr virus load in blood,” Arthritis Research & Therapy, vol. 6, no. 4, pp. R295–R302, 2004. View at Google Scholar · View at Scopus
  35. S. F. Yu, H. C. Wu, W. C. Tsai et al., “Detecting Epstein-Barr virus DNA from peripheral blood mononuclear cells in adult patients with systemic lupus erythematosus in Taiwan,” Medical Microbiology and Immunology, vol. 194, no. 3, pp. 115–120, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. G. W. Bornkamm, “Epstein-Barr virus and its role in the pathogenesis of Burkitt's lymphoma: an unresolved issue,” Seminars in Cancer Biology, vol. 19, no. 6, pp. 351–365, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. K. P. Chang, C. L. Hsu, Y. L. Chang et al., “Complementary serum test of antibodies to Epstein-Barr virus nuclear antigen-1 and early antigen: a possible alternative for primary screening of nasopharyngeal carcinoma,” Oral Oncology, vol. 44, no. 8, pp. 784–792, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Iwatsuki, Z. Xu, M. Takata et al., “The association of latent Epstein-Barr virus infection with hydroa vacciniforme,” British Journal of Dermatology, vol. 140, no. 4, pp. 715–721, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. A. El-Guindy, L. Heston, and G. Miller, “A subset of replication proteins enhances origin recognition and lytic replication by the epstein-barr virus ZEBRA protein,” PLoS Pathogens, vol. 6, no. 8, Article ID e1001054, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Kenney, J. Kamine, E. H. Holley-Guthrie, J. C. Lin, E. C. Mar, and J. Pagano, “The Epstein-Barr virus (EBV) BZLF1 immediate-early gene product differentially affects latent versus productive EBV promoters,” Journal of Virology, vol. 63, no. 4, pp. 1729–1736, 1989. View at Google Scholar · View at Scopus
  41. M. S. Cho, G. Milman, and S. D. Hayward, “A second Epstein-Barr virus early antigen gene in BamHI fragment M encodes a 48- to 50-kilodalton nuclear protein,” Journal of Virology, vol. 56, no. 3, pp. 860–866, 1985. View at Google Scholar · View at Scopus
  42. E. A. Holley-Guthrie, E. B. Quinlivan, E. C. Mar, and S. Kenney, “The Epstein-Barr virus (EBV) BMRF1 promoter for early antigen (EA-D) is regulated by the EBV transactivators, BRLF1 and BZLF1, in a cell-specific manner,” Journal of Virology, vol. 64, no. 8, pp. 3753–3759, 1990. View at Google Scholar · View at Scopus
  43. E. B. Quinlivan, E. A. Holley-Guthrie, M. Norris, D. Gutsch, S. L. Bachenheimer, and S. C. Kenney, “Direct BRLF1 binding is required for cooperative BZLF1 /BRLF1 activation of the Epstein-Barr virus early promoter, BMRF1,” Nucleic Acids Research, vol. 21, no. 8, pp. 1999–2007, 1993. View at Google Scholar · View at Scopus
  44. Q. Zhang, Y. Hong, D. Dorsky et al., “Functional and physical interactions between the Epstein-Barr virus (EBV) proteins BZLF1 and BMRF1: Effects on EBV transcription and lytic replication,” Journal of Virology, vol. 70, no. 8, pp. 5131–5142, 1996. View at Google Scholar · View at Scopus
  45. Q. Zhang, E. Holley-Guthrie, J. Q. Ge, D. Dorsky, and S. Kenney, “The Epstein-Barr virus (EBV) DNA polymerase accessory protein, BMRF1, activates the essential downstream component of the EBV oriLyt,” Virology, vol. 230, no. 1, pp. 22–34, 1997. View at Publisher · View at Google Scholar · View at Scopus
  46. E. D. Fixman, G. S. Hayward, and S. D. Hayward, “trans-Acting requirements for replication of Epstein-Barr virus ori-Lyt,” Journal of Virology, vol. 66, no. 8, pp. 5030–5039, 1992. View at Google Scholar · View at Scopus
  47. K. Fujii, N. Yokoyama, T. Kiyono et al., “The Epstein-Barr virus Pol catalytic subunit physically interacts with the BBLF4-BSLF1-BBLF2/3 complex,” Journal of Virology, vol. 74, no. 6, pp. 2550–2557, 2000. View at Publisher · View at Google Scholar · View at Scopus
  48. W. Hammerschmidt and B. Sugden, “Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein-Barr virus,” Cell, vol. 55, no. 3, pp. 427–433, 1988. View at Google Scholar · View at Scopus
  49. G. Liao, F. Y. Wu, and S. D. Hayward, “Interaction with the Epstein-Barr virus helicase targets Zta to DNA replication compartments,” Journal of Virology, vol. 75, no. 18, pp. 8792–8802, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Schepers, D. Pich, and W. Hammerschmid, “Activation of oriLyt, the lytic origin of DNA replication of Epstein-Barr virus, by BZLF1,” Virology, vol. 220, no. 2, pp. 367–376, 1996. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. Zeng, J. Middeldorp, J. J. Madjar, and T. Ooka, “A major DNA binding protein encoded by BALF2 open reading frame of Epstein-Barr Virus (EBV) forms a complex with other EBV DNA-binding proteins: DNAase, EA-D, and DNA polymerase,” Virology, vol. 239, no. 2, pp. 285–295, 1997. View at Publisher · View at Google Scholar · View at Scopus
  52. D. A. Thorley-Lawson, “Epstein-Barr virus: exploiting the immune system,” Nature Reviews Immunology, vol. 1, no. 1, pp. 75–82, 2001. View at Google Scholar · View at Scopus
  53. H. Kanegane, H. Wakiguchi, C. Kanegane, T. Kurashige, and G. Tosato, “Viral interleukin-10 in chronic active Epstein-Barr virus infection,” Journal of Infectious Diseases, vol. 176, no. 1, pp. 254–257, 1997. View at Google Scholar · View at Scopus
  54. S. Henderson, D. Huen, M. Rowe, C. Dawson, G. Johnson, and A. Rickinson, “Epstein-Barr virus-coded BHRF1 protein, a viral homologue of Bcl-2, protects human B cells from programmed cell death,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 18, pp. 8479–8483, 1993. View at Google Scholar · View at Scopus
  55. K. M. Wong and A. J. Levine, “Identification and mapping of Epstein-Barr virus early antigens and demonstration of a viral gene activator that functions in trans,” Journal of Virology, vol. 60, no. 1, pp. 149–156, 1986. View at Google Scholar · View at Scopus
  56. J. S. Li, B. S. Zhou, G. E. Dutschman, S. P. Grill, R. S. Tan, and Y. C. Cheng, “Association of Epstein-Barr virus early antigen diffuse component and virus-specified DNA polymerase activity,” Journal of Virology, vol. 61, no. 9, pp. 2947–2949, 1987. View at Google Scholar · View at Scopus
  57. T. Tsurumi, “Purification and characterization of the DNA-binding activity of the Epstein-Barr virus DNA polymerase accessory protein BMRF1 gene products, as expressed in insect cells by using the baculovirus system,” Journal of Virology, vol. 67, no. 3, pp. 1681–1687, 1993. View at Google Scholar · View at Scopus
  58. T. Tsurumi, T. Daikoku, R. Kurachi, and Y. Nishiyama, “Functional interaction between Epstein-Barr virus DNA polymerase catalytic subunit and its accessory subunit in vitro,” Journal of Virology, vol. 67, no. 12, pp. 7648–7653, 1993. View at Google Scholar · View at Scopus
  59. T. Daikoku, A. Kudoh, M. Fujita et al., “Architecture of replication compartments formed during Epstein-Barr virus lytic replication,” Journal of Virology, vol. 79, no. 6, pp. 3409–3418, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Nakayama, T. Murata, K. Murayama et al., “Epstein-Barr virus polymerase processivity factor enhances BALF2 promoter transcription as a coactivator for the BZLF1immediate-early protein,” Journal of Biological Chemistry, vol. 284, no. 32, pp. 21557–21568, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. Q. Zhang, E. Holley-Guthrie, D. Dorsky, and S. Kenney, “Identification of transactivator and nuclear localization domains in the Epstein-Barr virus DNA polymerase accessory protein, BMRF1,” Journal of General Virology, vol. 80, no. 1, pp. 69–74, 1999. View at Google Scholar · View at Scopus
  62. A. Kiehl and D. I. Dorsky, “Bipartite DNA-binding region of the Epstein-Barr virus BMRF1 product essential for DNA polymerase accessory function,” Journal of Virology, vol. 69, no. 3, pp. 1669–1677, 1995. View at Google Scholar · View at Scopus
  63. B. Neuhierl, R. Feederle, W. Hammerschmidt, and H. J. Delecluse, “Glycoprotein gp110 of Epstein-Barr virus determines viral tropism and efficiency of infection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 23, pp. 15036–15041, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. B. W. Henson, E. M. Perkins, J. E. Cothran, and P. Desai, “Self-assembly of Epstein-Barr virus capsids,” Journal of Virology, vol. 83, no. 8, pp. 3877–3890, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. A. H. Draborg, J. M. Jørgensen, H. Müller et al., “Epstein-Barr virus diffuse early antigen directed immunoglobulin A antibodies in systemic lupus erythematosus patients,” Scandinavian Journal of Rheumatology. In press.
  66. G. J. Babcock, D. Hochberg, and D. A. Thorley-Lawson, “The expression pattern of Epstein-Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell,” Immunity, vol. 13, no. 4, pp. 497–506, 2000. View at Google Scholar · View at Scopus
  67. B. Adler, E. Schaadt, B. Kempkes, U. Zimber-Strobl, B. Baier, and G. W. Bornkamm, “Control of Epstein-Barr virus reactivation by activated CD40 and viral latent membrane protein 1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 1, pp. 437–442, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Levitskaya, A. Sharipo, A. Leonchiks, A. Ciechanover, and M. G. Masucci, “Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 23, pp. 12616–12621, 1997. View at Publisher · View at Google Scholar · View at Scopus
  69. L. L. Laichalk and D. A. Thorley-Lawson, “Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo,” Journal of Virology, vol. 79, no. 2, pp. 1296–1307, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. N. M. Steven, N. E. Annels, A. Kumar, A. M. Leese, M. G. Kurilla, and A. B. Rickinson, “Immediate early and early lytic cycle proteins are frequent targets of the Epstein-Barr virus-induced cytotoxic T cell response,” Journal of Experimental Medicine, vol. 185, no. 9, pp. 1605–1617, 1997. View at Publisher · View at Google Scholar · View at Scopus
  71. J. Setsuda, J. Teruya-Feldstein, N. L. Harris et al., “Interleukin-18, interferon-γ, IP-10, and Mig expression in Epstein- Barr virus-induced infectious mononucleosis and posttransplant lymphoproliferative disease,” American Journal of Pathology, vol. 155, no. 1, pp. 257–265, 1999. View at Google Scholar · View at Scopus
  72. K. Iwatsuki, T. Yamamoto, K. Tsuji et al., “A spectrum of clinical manifestations caused by host immune responses against Epstein-Barr virus infections,” Acta Medica Okayama, vol. 58, no. 4, pp. 169–180, 2004. View at Google Scholar · View at Scopus
  73. J. F. Jones and S. E. Straus, “Chronic Epstein-Barr virus infection,” Annual Review of Medicine, vol. 38, pp. 195–209, 1987. View at Google Scholar · View at Scopus
  74. T. Ooka, M. De Turenne-Tessier, and M. C. Stolzenberg, “Relationship between antibody production to Epstein-Barr virus (EBV) early antigens and various EBV-related diseases,” Springer Seminars in Immunopathology, vol. 13, no. 2, pp. 233–247, 1991. View at Google Scholar · View at Scopus
  75. S. Bhaduri-McIntosh, M. L. Landry, S. Nikiforow, M. Rotenberg, A. El-Guindy, and G. Miller, “Serum IgA antibodies to Epstein-Barr virus (EBV) early lytic antigens are present in primary EBV infection,” Journal of Infectious Diseases, vol. 195, no. 4, pp. 483–492, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. J. A. James, K. M. Kaufman, A. D. Farris, E. Taylor-Albert, T. J. A. Lehman, and J. B. Harley, “An increased prevalence of Epstein-Barr virus infection in young patients suggests a possible etiology for systemic lupus erythematosus,” Journal of Clinical Investigation, vol. 100, no. 12, pp. 3019–3026, 1997. View at Google Scholar · View at Scopus
  77. M. T. McClain, B. D. Poole, B. F. Bruner, K. M. Kaufman, J. B. Harley, and J. A. James, “An altered immune response to Epstein-Barr nuclear antigen 1 in pediatric systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 54, no. 1, pp. 360–368, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. C. Garzelli, M. Manunta, M. Incaprera, A. Bazzichi, P. G. Conaldi, and G. Falcone, “Antibodies to histones in infectious mononucleosis,” Immunology Letters, vol. 32, no. 2, pp. 111–116, 1992. View at Publisher · View at Google Scholar · View at Scopus
  79. S. P. Halbert and M. Anken, “Auto-antibodies in infectious mononucleosis, as determined by ELISA,” International Archives of Allergy and Applied Immunology, vol. 69, no. 3, pp. 257–261, 1982. View at Google Scholar · View at Scopus
  80. J. J. Y. Lu, D. Y. Chen, C. W. Hsieh, J. L. Lan, F. J. Lin, and S. H. Lin, “Association of Epstein-Barr virus infection with systemic lupus erythematosus in Taiwan,” Lupus, vol. 16, no. 3, pp. 168–175, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. B. D. Poole, A. K. Templeton, J. M. Guthridge, E. J. Brown, J. B. Harley, and J. A. James, “Aberrant Epstein-Barr viral infection in systemic lupus erythematosus,” Autoimmunity Reviews, vol. 8, no. 4, pp. 337–342, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. Y. Berkun, G. Zandman-Goddard, O. Barzilai et al., “Infectious antibodies in systemic lupus erythematosus patients,” Lupus, vol. 18, no. 13, pp. 1129–1135, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. D. Y. Chen, Y. M. Chen, J. L. Lan et al., “Polymyositis/dermatomyositis and nasopharyngeal carcinoma: the Epstein-Barr virus connection?” Journal of Clinical Virology, vol. 49, no. 4, pp. 290–295, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. M. L. Huggins, I. Todd, and R. J. Powell, “Reactivation of Epstein-Barr virus in patients with systemic lupus erythematosus,” Rheumatology International, vol. 25, no. 3, pp. 183–187, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. P. Stratta, C. Canavese, G. Ciccone et al., “Correlation between cytomegalovirus infection and Raynaud's phenomenon in lupus nephritis,” Nephron, vol. 82, no. 2, pp. 145–154, 1999. View at Publisher · View at Google Scholar · View at Scopus
  86. C. J. Chen, K. H. Lin, S. C. Lin et al., “High prevalence of immunoglobulin A antibody against Epstein-Barr virus capsid antigen in adult patients with lupus with disease flare: case control studies,” Journal of Rheumatology, vol. 32, no. 1, pp. 44–47, 2005. View at Google Scholar · View at Scopus
  87. C. G. Parks, G. S. Cooper, L. L. Hudson et al., “Association of Epstein-Barr virus with systemic lupus erythematosus: effect modification by race, age, and cytotoxic T lymphocyte-associated antigen 4 genotype,” Arthritis and Rheumatism, vol. 52, no. 4, pp. 1148–1159, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. B. A. Esen, G. YIlmaz, S. Uzun et al., “Serologic response to Epstein-Barr virus antigens in patients with systemic lupus erythematosus: a controlled study,” Rheumatology International, vol. 32, no. 1, pp. 79–83, 2012. View at Publisher · View at Google Scholar
  89. G. Zandman-Goddard, Y. Berkun, O. Barzilai et al., “Exposure to Epstein-Barr virus infection is associated with mild systemic lupus erythematosus disease,” Annals of the New York Academy of Sciences, vol. 1173, pp. 658–663, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. C. S. Lau, K. Y. Yuen, K. H. Chan, and R. W. S. Wong, “Lack of evidence of active lytic replication of Epstein-Barr and cytomegaloviruses in patients with systemic lupus erythematosus,” Chinese Medical Journal, vol. 111, no. 7, pp. 660–665, 1998. View at Google Scholar · View at Scopus
  91. A. P. Grammatikos and G. C. Tsokos, “Immunodeficiency and autoimmunity: lessons from systemic lupus erythematosus,” Trends in Molecular Medicine, vol. 18, no. 2, pp. 101–108, 2012. View at Publisher · View at Google Scholar
  92. A. P. F. Mantovani, M. P. Monclaro, and T. L. Skare, “Prevalence of IgA deficiency in adult systemic lupus erythematosus and the study of the association with its clinical and autoantibody profiles,” Revista Brasileira de Reumatologia, vol. 50, no. 3, pp. 273–282, 2010. View at Google Scholar · View at Scopus
  93. B. D. Poole, R. H. Scofield, J. B. Harley, and J. A. James, “Epstein-Barr virus and molecular mimicry in systemic lupus erythematosus,” Autoimmunity, vol. 39, no. 1, pp. 63–70, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. J. B. Harley and J. A. James, “Epstein-Barr virus infection induces lupus autoimmunity,” Bulletin of the NYU Hospital for Joint Diseases, vol. 64, no. 1-2, pp. 45–50, 2006. View at Google Scholar · View at Scopus
  95. B. D. Poole, T. Gross, S. Maier, J. B. Harley, and J. A. James, “Lupus-like autoantibody development in rabbits and mice after immunization with EBNA-1 fragments,” Journal of Autoimmunity, vol. 31, no. 4, pp. 362–371, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. B. R. Berner, M. Tary-Lehmann, N. L. Yonkers, A. D. Askari, P. V. Lehmann, and D. D. Anthony, “Phenotypic and functional analysis of EBV-specific memory CD8 cells in SLE,” Cellular Immunology, vol. 235, no. 1, pp. 29–38, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. I. Sekigawa, M. Nawata, N. Seta, M. Yamada, N. Iida, and H. Hashimoto, “Cytomegalovirus infection in patients with systemic lupus erythematosus,” Clinical and Experimental Rheumatology, vol. 20, no. 4, pp. 559–564, 2002. View at Google Scholar · View at Scopus
  98. M. Pavlovic, A. Kats, M. Cavallo, and Y. Shoenfeld, “Clinical and molecular evidence for association of SLE with parvovirus B19,” Lupus, vol. 19, no. 7, pp. 783–792, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. E. Balada, M. Vilardell-Tarrés, and J. Ordi-Ros, “Implication of human endogenous retroviruses in the development of autoimmune diseases,” International Reviews of Immunology, vol. 29, no. 4, pp. 351–370, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. A. Doria, M. Canova, M. Tonon et al., “Infections as triggers and complications of systemic lupus erythematosus,” Autoimmunity Reviews, vol. 8, no. 1, pp. 24–28, 2008. View at Publisher · View at Google Scholar · View at Scopus