Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2012 (2012), Article ID 450738, 11 pages
http://dx.doi.org/10.1155/2012/450738
Research Article

Adaptive Immune Response to Model Antigens Is Impaired in Murine Leukocyte-Adhesion Deficiency-1 Revealing Elevated Activation Thresholds In Vivo

1Department of Dermatology and Allergic Diseases, University of Ulm, Maienweg 12, 89081 Ulm, Germany
2Department of Molecular and Cellular Sports Medicine, German Sports University, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
3Institute of Immunology, Hannover Medical School, Carl-Neuberg-Straß 1, 30625 Hannover, Germany
4Institute of Pathology, University of Leipzig, Liebigstraße, 04103 Leipzig, Germany
5Mouse Genetics and Inflammation Laboratory, Institute for Genetics, University of Cologne, Zülpicher Straß 47a, 50674 Cologne, Germany
6LIMES (Life and Medical Sciences) Institute, University of Bonn, Carl-Troll-Straß 31, 53115 Bonn, Germany
7Institute of Immunology, University of Muenster, Röntgenstraße 21, 48149 Muenster, Germany
8Department of Dermatology, University of Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
9Department of Molecular Immunology, Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shose, 1113 Sofia, Bulgaria
10Department of Anatomy I, University of Cologne, Joseph-Stelzmann Straß 9, 50931 Cologne, Germany
11Faculty of Life Science, University of Manchester, Oxford Road, Manchester M13 9PT, UK

Received 15 October 2011; Accepted 6 December 2011

Academic Editor: Alexandre S. Basso

Copyright © 2012 Thorsten Peters et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Balkow, S. Heinz, P. Schmidbauer et al., “LFA-1 activity state on dendritic cells regulates contact duration with T cells and promotes T-cell priming,” Blood, vol. 116, no. 11, pp. 1885–1894, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. R. Carrasco, S. J. Fleire, T. Cameron, M. L. Dustin, and F. D. Batista, “LFA-1/ICAM-1 interaction lowers the threshold of B cell activation by facilitating B cell adhesion and synapse formation,” Immunity, vol. 20, no. 5, pp. 589–599, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Grakoui, S. K. Bromley, C. Sumen et al., “The immunological synapse: a molecular machine controlling T cell activation,” Science, vol. 285, no. 5425, pp. 221–227, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Iezzi, K. Karjalainen, and A. Lanzavecchia, “The duration of antigenic stimulation determines the fate of naive and effector T cells,” Immunity, vol. 8, no. 1, pp. 89–95, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. O. D. Perez, D. Mitchell, G. C. Jager et al., “Leukocyte functional antigen 1 lowers T cell activation thresholds and signaling through cytohesin-1 and Jun-activating binding protein 1,” Nature Immunology, vol. 4, no. 11, pp. 1083–1092, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Hogg, I. Patzak, and F. Willenbrock, “The insider's guide to leukocyte integrin signalling and function,” Nature Reviews Immunology, vol. 11, no. 6, pp. 416–426, 2011. View at Publisher · View at Google Scholar
  7. L. A. Zuckerman, L. Pullen, and J. Miller, “Functional consequences of costimulation by ICAM-1 on IL-2 gene expression and T cell activation,” Journal of Immunology, vol. 160, no. 7, pp. 3259–3268, 1998. View at Google Scholar · View at Scopus
  8. J. J. Kim, A. Tsai, L. K. Nottingham et al., “Intracellular adhesion molecule-1 modulates β-chemokines and directly costimulates T cells in vivo,” Journal of Clinical Investigation, vol. 103, no. 6, pp. 869–877, 1999. View at Google Scholar · View at Scopus
  9. G. Varga, N. Nippe, S. Balkow et al., “LFA-1 contributes to signal i of T-cell activation and to the production of T h 1 cytokines,” Journal of Investigative Dermatology, vol. 130, no. 4, pp. 1005–1012, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. L. M. Bradley, J. Harbertson, G. C. Freschi, R. Kondrack, and P. J. Linton, “Regulation of development and function of memory CD4 subsets,” Immunologic Research, vol. 21, no. 2-3, pp. 149–158, 2000. View at Google Scholar · View at Scopus
  11. B. Graf, T. Bushnell, and J. Miller, “LFA-1-mediated T cell costimulation through increased localization of TCR/class II complexes to the central supramolecular activation cluster and exclusion of CD45 from the immunological synapse,” Journal of Immunology, vol. 179, no. 3, pp. 1616–1624, 2007. View at Google Scholar · View at Scopus
  12. S. Y. Tseng, J. C. Waite, M. Liu, S. Vardhana, and M. L. Dustin, “T cell-dendritic cell immunological synapses contain TCR-dependent CD28-CD80 clusters that recruit protein kinase Cθ,” Journal of Immunology, vol. 181, no. 7, pp. 4852–4863, 2008. View at Google Scholar · View at Scopus
  13. J. Boisvert, S. Edmondson, and M. F. Krummel, “Immunological synapse formation licenses CD40-CD40L accumulations at T-APC contact sites,” Journal of Immunology, vol. 173, no. 6, pp. 3647–3652, 2004. View at Google Scholar · View at Scopus
  14. D. R. Fooksman, S. Vardhana, G. Vasiliver-Shamis et al., “Functional anatomy of T cell activation and synapse formation,” Annual Review of Immunology, vol. 28, pp. 79–105, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Abraham, J. Griffith, and J. Miller, “The dependence for leukocyte function-associated antigen-1/ICAM-1 interactions in T cell activation cannot be overcome by expression of high density TCR ligand,” Journal of Immunology, vol. 162, no. 8, pp. 4399–4405, 1999. View at Google Scholar · View at Scopus
  16. C. R. Luksch, O. Winqvist, M. E. Ozaki et al., “Intercellular adhesion molecule-1 inhibits interleukin 4 production by naive T cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 6, pp. 3023–3028, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. H. H. Smits, E. C. De Jong, J. H. N. Schuitemaker et al., “Intercellular adhesion molecule-1/LFA-1 ligation favors human Th1 development,” Journal of Immunology, vol. 168, no. 4, pp. 1710–1716, 2002. View at Google Scholar · View at Scopus
  18. P. J. L. Lane, F. M. McConnell, E. A. Clark, and E. Mellins, “Rapid signaling to B cells by antigen-specific T cells requires CD18/CD54 interaction,” Journal of Immunology, vol. 147, no. 12, pp. 4103–4108, 1991. View at Google Scholar · View at Scopus
  19. S. L. Constant, “B lymphocytes as antigen-presenting cells for CD4+ T cell priming in vivo,” Journal of Immunology, vol. 162, no. 10, pp. 5695–5703, 1999. View at Google Scholar · View at Scopus
  20. A. Srinivas Reddy, P. K. Tsourkas, and S. Raychaudhuri, “Monte Carlo study of B-cell receptor clustering mediated by antigen crosslinking and directed transport,” Cellular and Molecular Immunology, vol. 8, no. 3, pp. 255–264, 2011. View at Publisher · View at Google Scholar
  21. A. Fischer, P. H. Trung, and B. Descamps Latscha, “Bone-marrow transplantation for inborn error of phagocytic cells associated with defective adherence, chemotaxis, and oxidative response during opsonised particle phagocytosis,” Lancet, vol. 2, no. 8348, pp. 473–476, 1983. View at Google Scholar
  22. D. C. Anderson, M. J. Finegold, and R. Rothlein, “The severe and moderate phenotypes of heritable Mac-1, LFA-1 deficiency: their quantitative definition and relation to leukocyte dysfunction and clinical features,” Journal of Infectious Diseases, vol. 152, no. 4, pp. 668–689, 1985. View at Google Scholar
  23. A. Fischer, A. Durandy, G. Sterkers, and C. Griscelli, “Role of the LFA-1 molecule in cellular interactions required for antibody production in humans,” Journal of Immunology, vol. 136, no. 9, pp. 3198–3203, 1986. View at Google Scholar · View at Scopus
  24. H. D. Ochs, S. Nonoyama, Q. Zhu, M. Farrington, and R. J. Wedgwood, “Regulation of antibody responses: the role of complement and adhesion molecules,” Clinical Immunology and Immunopathology, vol. 67, no. 3, pp. S33–S40, 1993. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Scharffetter-Kochanek, H. Lu, K. Norman et al., “Spontaneous skin ulceration and defective T cell function in CD18 null mice,” Journal of Experimental Medicine, vol. 188, no. 1, pp. 119–131, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Peters, A. Sindrilaru, B. Hinz et al., “Wound-healing defect of CD18(−/−) mice due to a decrease in TGF-β1 and myofibroblast differentiation,” EMBO Journal, vol. 24, no. 19, pp. 3400–3410, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Oreshkova, H. Wang, A. M. Seier et al., “β2 Integrin deficiency yields unconventional double-negative T cells distinct from mature classical natural killer T cells in mice,” Immunology, vol. 128, no. 2, pp. 271–286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Peters, W. Bloch, C. Wickenhauser et al., “Terminal B cell differentiation is skewed by deregulated interleukin-6 secretion in β2 integrin-deficient mice,” Journal of Leukocyte Biology, vol. 80, no. 3, pp. 599–607, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Sindrilaru, T. Peters, J. Schymeinsky et al., “Wound healing defect of Vav3−/− mice due to impaired β2-integrin-dependent macrophage phagocytosis of apoptotic neutrophils,” Blood, vol. 113, no. 21, pp. 5266–5276, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. R. S. Jack, T. Imanishi Kari, and K. Rajewsky, “Idiotypic analysis of the response of C57BL/6 mice to the (4-hydroxy-3-nitrophenyl)acetyl group,” European Journal of Immunology, vol. 7, no. 8, pp. 559–565, 1977. View at Google Scholar · View at Scopus
  31. F. I. Smith, H. Tesch, and K. Rajewsky, “Heterogeneous and monoclonal helper T cells induce similar anti-(4-hydroxy-3-nitrophenyl)acetyl (NP) antibody populations in the primary adoptive response. II. Lambda light chain dominance and idiotope expression,” European Journal of Immunology, vol. 14, no. 2, pp. 195–200, 1984. View at Google Scholar · View at Scopus
  32. H. H. Song and J. Cerny, “Functional heterogeneity of marginal zone B cells revealed by their ability to generate both early antibody-forming cells and germinal centers with hypermutation and memory in response to a T-dependent antigen,” Journal of Experimental Medicine, vol. 198, no. 12, pp. 1923–1935, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Takahashi, P. R. Dutta, D. M. Cerasoli, and G. Kelsoe, “In situ studies of the primary immune response to (4-hydroxy-3- nitrophenyl)acetyl. v. affinity maturation develops in two stages of clonal selection,” Journal of Experimental Medicine, vol. 187, no. 6, pp. 885–895, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Förster, A. E. Mattis, E. Kremmer, E. Wolf, G. Brem, and M. Lipp, “A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen,” Cell, vol. 87, no. 6, pp. 1037–1047, 1996. View at Publisher · View at Google Scholar · View at Scopus
  35. K. E. Müller, A. Hoek, V. P. M. G. Rutten, W. E. Bernadina, and G. H. Wentink, “Antigen-specific immune responses in cattle with inherited β2-integrin deficiency,” Veterinary Immunology and Immunopathology, vol. 58, no. 1, pp. 39–53, 1997. View at Publisher · View at Google Scholar
  36. S. Grabbe, G. Varga, S. Beissert et al., “β2 integrins are required for skin homing of primed T cells but not for priming naive T cells,” Journal of Clinical Investigation, vol. 109, no. 2, pp. 183–192, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Miller, J. Stedra, G. Kelsoe, and J. Cerny, “Facultative role of germinal centers and T cells in the somatic diversification of IgV(H) genes,” Journal of Experimental Medicine, vol. 181, no. 4, pp. 1319–1331, 1995. View at Publisher · View at Google Scholar · View at Scopus
  38. R. A. Tripp, D. J. Topham, S. R. Watson, and P. C. Doherty, “Bone marrow can function as a lymphoid organ during a primary immune response under conditions of disrupted lymphocyte trafficking,” Journal of Immunology, vol. 158, no. 8, pp. 3716–3720, 1997. View at Google Scholar · View at Scopus
  39. J. G. Tew, R. M. DiLosa, G. F. Burton et al., “Germinal centers and antibody production in bone marrow,” Immunological Reviews, no. 126, pp. 99–112, 1992. View at Google Scholar · View at Scopus
  40. A. Lanzavecchia and F. Sallusto, “Antigen decoding by T lymphocytes: from synapses to fate determination,” Nature Immunology, vol. 2, no. 6, pp. 487–492, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. F. Schönlau, K. Scharffetter-Kochanek, S. Grabbe, B. Pietz, C. Sorg, and C. Sunderkötter, “In experimental leishmaniasis deficiency of CD18 results in parasite dissemination associated with altered macrophage functions and incomplete Th1 cell response,” European Journal of Immunology, vol. 30, no. 9, pp. 2729–2740, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. P. K. A. Mongini, C. A. Blessinger, P. F. Highet, and J. K. Inman, “Membrane IgM-mediated signaling of human B cells: effect of increased ligand binding site valency on the affinity and concentration requirements for inducing diverse stages of activation,” Journal of Immunology, vol. 148, no. 12, pp. 3892–3901, 1992. View at Google Scholar · View at Scopus
  43. T. Kakiuchi, T. Tamura, Y. Gyotoku, and H. Nariuchi, “IL-2 production by B cells stimulated with a specific antigen,” Cellular Immunology, vol. 138, no. 1, pp. 207–215, 1991. View at Publisher · View at Google Scholar · View at Scopus
  44. B. Stockinger, T. Zal, A. Zal, and D. Gray, “B cells solicit their own help from T cells,” Journal of Experimental Medicine, vol. 183, no. 3, pp. 891–899, 1996. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Constant, D. Sant'Angelo, T. Pasqualini et al., “Peptide and protein antigens require distinct antigen- presenting cell subsets for the priming of CD4+ T cells,” Journal of Immunology, vol. 154, no. 10, pp. 4915–4923, 1995. View at Google Scholar · View at Scopus
  46. M. Sixt, “Interstitial locomotion of leukocytes,” Immunology Letters, vol. 138, no. 1, pp. 32–34, 2011. View at Publisher · View at Google Scholar
  47. T. Lämmermann, B. L. Bader, S. J. Monkley et al., “Rapid leukocyte migration by integrin-independent flowing and squeezing,” Nature, vol. 453, no. 7191, pp. 51–55, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. P. Weinmann, K. Scharffetter-Kochanek, S. B. Forlow, T. Peters, and B. Walzog, “A role for apoptosis in the control of neutrophil homeostasis in the circulation: insights from CD18-deficient mice,” Blood, vol. 101, no. 2, pp. 739–746, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. O. Pabst, T. Peters, N. Czeloth, G. Bernhardt, K. Scharffetter-Kochanek, and R. Förster, “Cutting edge: egress of newly generated plasma cells from peripheral lymph nodes depends on β2 integrin,” Journal of Immunology, vol. 174, no. 12, pp. 7492–7495, 2005. View at Google Scholar
  50. J. Jacob, G. Kelsoe, K. Rajewsky, and U. Weiss, “Intraclonal generation of antibody mutants in germinal centres,” Nature, vol. 354, no. 6352, pp. 389–392, 1991. View at Publisher · View at Google Scholar · View at Scopus
  51. I. C. M. MacLennan, “Germinal centers,” Annual Review of Immunology, vol. 12, pp. 117–139, 1994. View at Google Scholar · View at Scopus
  52. M. Pasparakis, L. Alexopoulou, V. Episkopou, and G. Kollias, “Immune and inflammatory responses in TNFα-deficient mice: a critical requirement for TNFα in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response,” Journal of Experimental Medicine, vol. 184, no. 4, pp. 1397–1411, 1996. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Matsumoto, S. F. Lo, C. J. L. Carruthers et al., “Affinity maturation without germinal centres in lymphotoxin-α- deficient mice,” Nature, vol. 382, no. 6590, pp. 462–466, 1996. View at Publisher · View at Google Scholar · View at Scopus
  54. K. J. Maloy, B. Odermatt, H. Hengartner, and R. M. Zinkernagel, “Interferon γ-producing γδ T cell-dependent antibody isotype switching in the absence of germinal center formation during virus infection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 3, pp. 1160–1165, 1998. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Kato, N. Motoyama, I. Taniuchi et al., “Affinity maturation in Lyn kinase-deficient mice with defective germinal center formation,” Journal of Immunology, vol. 160, no. 10, pp. 4788–4795, 1998. View at Google Scholar · View at Scopus
  56. P. Piccardoni, R. Sideri, S. Manarini et al., “Platelet/polymorphonuclear leukocyte adhesion: a new role for SRC kinases in Mac-1 adhesive function triggered by P-selectin,” Blood, vol. 98, no. 1, pp. 108–116, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. Y. F. Lu, M. Singh, and J. Cerny, “Canonical germinal center B cells may not dominate the memory response to antigenic challenge,” International Immunology, vol. 13, no. 5, pp. 643–655, 2001. View at Google Scholar · View at Scopus
  58. R. M. Dilosa, K. Maeda, A. Masuda, A. K. Szakal, and J. G. Tew, “Germinal center B cells and antibody production in the bone marrow,” Journal of Immunology, vol. 146, no. 12, pp. 4071–4077, 1991. View at Google Scholar · View at Scopus
  59. G. P. Lahvis and J. Cerny, “Induction of germinal center B cell markers in vitro by activated CD4+ T lymphocytes: the role of CD40 ligand, soluble factors, and B cell antigen receptor cross-linking,” Journal of Immunology, vol. 159, no. 4, pp. 1783–1793, 1997. View at Google Scholar · View at Scopus