Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2012, Article ID 543085, 10 pages
Research Article

Variable EBV DNA Load Distributions and Heterogeneous EBV mRNA Expression Patterns in the Circulation of Solid Organ versus Stem Cell Transplant Recipients

1Department of Pathology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
2Department of Clinical Genetics, Academic Hospital Maastricht, 6202 AZ Maastricht, The Netherlands
3Department of Pulmonary Diseases, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands
4Department of Laboratory Medicine, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands
5Department of Hematology, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
6Department of Hematology, University Medical Center, 3508 GA Utrecht, The Netherlands

Received 24 July 2012; Revised 30 November 2012; Accepted 5 December 2012

Academic Editor: Rossana Cavallo

Copyright © 2012 A. E. Greijer et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Epstein-Barr virus (EBV) driven post-transplant lymphoproliferative disease (PTLD) is a heterogeneous and potentially life-threatening condition. Early identification of aberrant EBV activity may prevent progression to B-cell lymphoma. We measured EBV DNA load and RNA profiles in plasma and cellular blood compartments of stem cell transplant (SCT; ), solid organ transplant recipients (SOT; ), and SOT having chronic elevated EBV-DNA load . In SCT, EBV DNA was heterogeneously distributed, either in plasma or leukocytes or both. In SOT, EBV DNA load was always cell associated, predominantly in B cells, but occasionally in T cells (CD4 and CD8) or monocytes. All SCT with cell-associated EBV DNA showed BARTs and EBNA1 expression, while LMP1 and LMP2 mRNA was found in 1 and 3 cases, respectively. In SOT, expression of BARTs was detected in all leukocyte samples. LMP2 and EBNA1 mRNA was found in 5/15 and 2/15, respectively, but LMP1 mRNA in only 1, coinciding with severe PTLD and high EBV DNA. Conclusion: EBV DNA is differently distributed between white cells and plasma in SOT versus SCT. EBV RNA profiling in blood is feasible and may have added value for understanding pathogenic virus activity in patients with elevated EBV-DNA.