Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2012, Article ID 607851, 8 pages
http://dx.doi.org/10.1155/2012/607851
Clinical Study

Sorafenib Prevents Escape from Host Immunity in Liver Cirrhosis Patients with Advanced Hepatocellular Carcinoma

Division of Gastroenterology and Hepatology, Toho University Medical Center, Omori Hospital, 6-11-1, Omorinishi, Ota-ku, Tokyo 143-8541, Japan

Received 26 December 2011; Revised 9 March 2012; Accepted 9 March 2012

Academic Editor: Julie R. Ostberg

Copyright © 2012 Hidenari Nagai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Estimating the world cancer burden: globocan 2000,” International Journal of Cancer, vol. 94, no. 2, pp. 153–156, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. M. C. Yu and J. M. Yuan, “Environmental factors and risk for hepatocellular carcinoma,” Gastroenterology, vol. 127, pp. S72–S78, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. F. X. Bosch, J. Ribes, M. Díaz, and R. Cléries, “Primary liver cancer: worldwide incidence and trends,” Gastroenterology, vol. 127, pp. S5–S16, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. J. M. Llover, S. Ricci, V. Mazzaferro et al., “SHARP Investigators Study Group. Sorafenib in advanced hepatocellular carcinoma,” The New England Journal of Medicine, vol. 359, pp. 378–390, 2008. View at Google Scholar
  5. A. Moreno-Aspitia, R. F. Morton, D. W. Hillman et al., “Phase II trial of sorafenib in patients with metastatic breast cancer previously exposed to anthracyclines or taxanes: north central cancer treatment group and mayo clinic trial n0336,” Journal of Clinical Oncology, vol. 27, no. 1, pp. 11–15, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. G. K. Abou-Alfa, L. Schwartz, S. Ricci et al., “Phase II study of sorafenib in patients with advanced hepatocellular carcinoma,” Journal of Clinical Oncology, vol. 24, no. 26, pp. 4293–4300, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Gabrilovich, “Mechanisms and functional significance of tumour-induced dendritic-cell defects,” Nature Reviews Immunology, vol. 4, no. 12, pp. 941–952, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. T. K. Hoffmann, J. Müller-Berghaus, R. L. Ferris, J. T. Johnson, W. J. Storkus, and T. L. Whiteside, “Alterations in the frequency of dendritic cell subsets in the peripheral circulation of patients with squamous cell carcinomas of the head and neck,” Clinical Cancer Research, vol. 8, no. 6, pp. 1787–1793, 2002. View at Google Scholar · View at Scopus
  9. S. Della Bella, M. Gennaro, M. Vaccari et al., “Altered maturation of peripheral blood dendritic cells in patients with breast cancer,” British Journal of Cancer, vol. 89, no. 8, pp. 1463–1472, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. D. I. Gabrilovich, H. L. Chen, K. R. Girgis et al., “Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells,” Nature Medicine, vol. 2, no. 10, pp. 1096–1103, 1996. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Ferrara, H. P. Gerber, and J. LeCouter, “The biology of VEGF and its receptors,” Nature Medicine, vol. 9, no. 6, pp. 669–676, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. T. R. Mosmann and R. L. Coffman, “TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties,” Annual Review of Immunology, vol. 7, pp. 145–173, 1989. View at Google Scholar · View at Scopus
  13. A. O'Garra, “Cytokines induce the development of functionally heterogeneous T helper cell subsets,” Immunity, vol. 8, no. 3, pp. 275–283, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Arai, F. Lee, A. Miyajima, S. Miyatake, N. Arai, and T. Yokota, “Cytokines: coordinators of immune and inflammatory responses,” Annual Review of Biochemistry, vol. 59, pp. 783–836, 1990. View at Google Scholar · View at Scopus
  15. R. A. Seder and W. E. Paul, “Acquisition of lymphokine-producing phenotype by CD4+ T cells,” Annual Review of Immunology, vol. 12, pp. 635–673, 1994. View at Google Scholar · View at Scopus
  16. I. Roitt, Ed., Essential Immunology, Blackwell Science, Malden, Mass, 9th edition, 1997.
  17. J. Kuby, J. Cameron, C. Todd, and J. Mitchell, Immunology, Freeman and Company, New York, NY, USA, 4th edition, 2000.
  18. M. Kobayashi, H. Kobayashi, R. B. Pollard, and F. Suzuki, “A pathogenic role of Th2 cells and their cytokine products on the pulmonary metastasis of murine B16 melanoma,” Journal of Immunology, vol. 160, no. 12, pp. 5869–5873, 1998. View at Google Scholar · View at Scopus
  19. L. Zitvogel, J. I. Mayordomo, T. Tjandrawan et al., “Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines,” Journal of Experimental Medicine, vol. 183, no. 1, pp. 87–97, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Tsung, J. B. Meko, G. R. Peplinski, Y. L. Tsung, and J. A. Norton, “IL-12 induces T helper 1-directed antitumor response,” Journal of Immunology, vol. 158, no. 7, pp. 3359–3365, 1997. View at Google Scholar · View at Scopus
  21. G. J. Weiner, H. M. Liu, J. E. Wooldridge, C. E. Dahle, and A. M. Krieg, “Imimmostimulatory oligodeoxynucleotides containing the CpG motif are effective as immune adjuvants in tumor antigen immunization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 20, pp. 10833–10837, 1997. View at Google Scholar · View at Scopus
  22. H. M. Hu, W. J. Urba, and B. A. Fox, “Gene-modified tumor vaccine with therapeutic potential shifts tumor-specific T cell response from a type 2 to a type 1 cytokine profile,” Journal of Immunology, vol. 161, no. 6, pp. 3033–3041, 1998. View at Google Scholar · View at Scopus
  23. T. Matsui, H. Nagai, Y. Sumino, and K. Miki, “Relationship of peripheral blood CD4-positive T cells to carcinogenesis in patients with HCV-related chronic hepatitis and liver cirrhosis,” Cancer Chemotherapy and Pharmacology, vol. 62, no. 3, pp. 401–406, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. E. M. Shevach, “Certified professionals: CD4+CD25+ suppressor T cells,” Journal of Experimental Medicine, vol. 193, no. 11, pp. F41–F45, 2001. View at Google Scholar · View at Scopus
  25. L. A. Stephens, C. Mottet, D. Mason, and F. Powrie, “Human CD4+ CD25+ thymoctes and peripheral T cells have immune suppressive activity in vitro,” European Journal of Immunology, vol. 31, pp. 1247–1254, 2001. View at Google Scholar
  26. H. Jonuleit, E. Schmitt, M. Stassen, A. Tuettenberg, J. Knop, and A. H. Enk, “Identification and functional characterization of human CD4+CD25+ T cells with regulatory properties isolated from peripheral blood,” Journal of Experimental Medicine, vol. 193, no. 11, pp. 1285–1294, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Nagai, D. Miyaki, T. Matsui et al., “Th1/Th2 balance: an important indicator of efficacy for intra-arterial chemotherapy,” Cancer Chemotherapy and Pharmacology, vol. 62, no. 6, pp. 959–963, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Momiyama, H. Nagai, and Y. Sumino, “Changes of host immunity in relation to efficacy in liver cirrhosis patients with advanced hepatocellular carcinoma treated by intra-arterial chemotherapy,” Cancer Chemotherapy and Pharmacology, vol. 64, no. 2, pp. 271–277, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Jung, U. Schauer, C. Heusser, C. Neumann, and C. Rieger, “Detection of intracellular cytokines by flow cytometry,” Journal of Immunological Methods, vol. 159, no. 1-2, pp. 197–207, 1993. View at Google Scholar · View at Scopus
  30. J. M. Llovet, A. M. Di Bisceglie, J. Bruix et al., “Design and endpoints of clinical trials in hepatocellular carcinoma,” Journal of the National Cancer Institute, vol. 100, no. 10, pp. 698–711, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Lencioni and J. M. Llovet, “Modified recist (mRECIST) assessment for hepatocellular carcinoma,” Seminars in Liver Disease, vol. 30, no. 1, pp. 52–60, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Kudo, H. Chung, and Y. Osaki, “Prognostic staging system for hepatocellular carcinoma (CLIP score): its value and limitations, and a proposal for a new staging system, the Japan Integrated Staging Score (JIS score),” Journal of Gastroenterology, vol. 38, no. 3, pp. 207–215, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Kohga, T. Takehara, T. Tatsumi et al., “Sorafenib inhibits the shedding of major histocompatibility complex class i-related chain a on hepatocellular carcinoma cells by down-regulating a disintegrin and metalloproteinase 9,” Hepatology, vol. 51, no. 4, pp. 1264–1273, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. W. Zhao, Y. H. Gu, R. Song, B. Q. Qu, and Q. Xu, “Sorafenib inhibits activation of human peripheral blood T cells by targeting LCK phosphorylation,” Leukemia, vol. 22, no. 6, pp. 1226–1233, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. M. M. Hipp, N. Hilf, S. Walter et al., “Sorafenib, but not sunitinib, affects function of dendritic cells and induction of primary immune responses,” Blood, vol. 111, no. 12, pp. 5610–5620, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. X. Zhou, S. L. Bailey-Bucktrout, L. T. Jeker et al., “Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo,” Nature Immunology, vol. 10, no. 9, pp. 1000–1007, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. D. A. Horwitz, S. G. Zheng, and J. D. Gray, “Natural and TGF-β-induced Foxp3+CD4+ CD25+ regulatory T cells are not mirror images of each other,” Trends in Immunology, vol. 29, no. 9, pp. 429–435, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Zhou, T. Ding, W. Pan, L. Y. Zhu, A. Li, and L. Zheng, “Increased intratumoral regulatory T cells are related to intratumoral macrophages and poor prognosis in hepatocellular carcinoma patients,” International Journal of Cancer, vol. 125, no. 7, pp. 1640–1648, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Wilhelm, C. Carter, M. Lynch et al., “Discovery and development of sorafenib: amultikinase inhibitor for treating cancer,” Nature Reviews Drug Discovery, vol. 5, no. 10, pp. 835–844, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. M. A. Avila, C. Berasain, B. Sangro, and J. Prieto, “New therapies for hepatocellular carcinoma,” Oncogene, vol. 25, no. 27, pp. 3866–3884, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. S. M. Wilhelm, C. Carter, L. Tang et al., “BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis,” Cancer Research, vol. 64, no. 19, pp. 7099–7109, 2004. View at Publisher · View at Google Scholar · View at Scopus