Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2013, Article ID 267971, 12 pages
http://dx.doi.org/10.1155/2013/267971
Review Article

IL-17A and Th17 Cells in Lung Inflammation: An Update on the Role of Th17 Cell Differentiation and IL-17R Signaling in Host Defense against Infection

Center for Comparative Respiratory Biology and Medicine, University of California, Davis, CA 95616, USA

Received 16 March 2013; Accepted 27 June 2013

Academic Editor: Samuel Huber

Copyright © 2013 Hsing-Chuan Tsai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. R. Mosmann and R. L. Coffman, “TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties,” Annual Review of Immunology, vol. 7, pp. 145–173, 1989. View at Google Scholar · View at Scopus
  2. C. Dong and R. A. Flavell, “Th1 and Th2 cells,” Current Opinion in Hematology, vol. 8, no. 1, pp. 47–51, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. N. J. Wilson, K. Boniface, J. R. Chan et al., “Development, cytokine profile and function of human interleukin 17-producing helper T cells,” Nature Immunology, vol. 8, no. 9, pp. 950–957, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Dong, “TH17 cells in development: an updated view of their molecular identity and genetic programming,” Nature Reviews Immunology, vol. 8, no. 5, pp. 337–348, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Hirota, H. Yoshitomi, M. Hashimoto et al., “Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model,” Journal of Experimental Medicine, vol. 204, no. 12, pp. 2803–2812, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. El-Behi, B. Ciric, H. Dai et al., “The encephalitogenicity of TH 17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF,” Nature Immunology, vol. 12, no. 6, pp. 568–575, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Spolski and W. J. Leonard, “Cytokine mediators of Th17 function,” European Journal of Immunology, vol. 39, no. 3, pp. 658–661, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. X. O. Yang, H. C. Seon, H. Park et al., “Regulation of inflammatory responses by IL-17F,” Journal of Experimental Medicine, vol. 205, no. 5, pp. 1063–1075, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. H.-L. Ma, S. Liang, J. Li et al., “IL-22 is required for Th17 cell-mediated pathology in a mouse model of psoriasis-like skin inflammation,” Journal of Clinical Investigation, vol. 118, no. 2, pp. 597–607, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Miossec, T. Korn, and V. K. Kuchroo, “Interleukin-17 and type 17 helper T cells,” The New England Journal of Medicine, vol. 361, no. 9, pp. 848–898, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Veldhoen, R. J. Hocking, C. J. Atkins, R. M. Locksley, and B. Stockinger, “TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells,” Immunity, vol. 24, no. 2, pp. 179–189, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. E. de Jong, T. Suddason, and G. M. Lord, “Translational mini-review series on Th17 Cells: development of mouse and human T helper 17 cells,” Clinical and Experimental Immunology, vol. 159, no. 2, pp. 148–158, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. K. I. Happel, M. Zheng, E. Young et al., “Cutting edge: roles of toll-like receptor 4 and IL-23 in IL-17 expression in response to Klebsiella pneumoniae infection,” Journal of Immunology, vol. 170, no. 9, pp. 4432–4436, 2003. View at Google Scholar · View at Scopus
  14. M. A. Stark, Y. Huo, T. L. Burcin, M. A. Morris, T. S. Olson, and K. Ley, “Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17,” Immunity, vol. 22, no. 3, pp. 285–294, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Lockhart, A. M. Green, and J. L. Flynn, “IL-17 production is dominated by γδ T cells rather than CD4 T cells during Mycobacterium tuberculosis infection,” Journal of Immunology, vol. 177, no. 7, pp. 4662–4669, 2006. View at Google Scholar · View at Scopus
  16. M.-L. Michel, A. C. Keller, C. Paget et al., “Identification of an IL-17-producing NK1.1neg iNKT cell population involved in airway neutrophilia,” Journal of Experimental Medicine, vol. 204, no. 5, pp. 995–1001, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Ferretti, O. Bonneau, G. R. Dubois, C. E. Jones, and A. Trifilieff, “Il-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide-induced airway neutrophilia: IL-15 as a possible trigger,” Journal of Immunology, vol. 170, no. 4, pp. 2106–2112, 2003. View at Google Scholar · View at Scopus
  18. T. Cupedo, N. K. Crellin, N. Papazian et al., “Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+CD127+ natural killer-like cells,” Nature Immunology, vol. 10, no. 1, pp. 66–74, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Takatori, Y. Kanno, W. T. Watford et al., “Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22,” Journal of Experimental Medicine, vol. 206, no. 1, pp. 35–41, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Buonocore, P. P. Ahern, H. H. Uhlig et al., “Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology,” Nature, vol. 464, no. 7293, pp. 1371–1375, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. A. C. Liu, M. Lee, B. M. McManus, and J. C. Choy, “Induction of endothelial nitric oxide synthase expression by IL-17 in human vascular endothelial cells: implications for vascular remodeling in transplant vasculopathy,” Journal of Immunology, vol. 188, no. 3, pp. 1544–1550, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Hot, V. Lenief, and P. Miossec, “Combination of IL-17 and TNFα induces a pro-inflammatory, pro-coagulant and pro-thrombotic phenotype in human endothelial cells,” Annals of the Rheumatic Diseases, vol. 71, no. 5, pp. 768–776, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. C.-Y. Kao, Y. Chen, P. Thai et al., “IL-17 markedly up-regulates β-defensin-2 expression in human airway epithelium via JAK and NF-κB signaling pathways,” Journal of Immunology, vol. 173, no. 5, pp. 3482–3491, 2004. View at Google Scholar · View at Scopus
  24. F. Huang, C.-Y. Kao, S. Wachi, P. Thai, J. Ryu, and R. Wu, “Requirement for both JAK-mediated PI3K signaling and ACT1/TRAF6/TAK1-dependent NF-κB activation by IL-17A in enhancing cytokine expression in human airway epithelial cells,” Journal of Immunology, vol. 179, no. 10, pp. 6504–6513, 2007. View at Google Scholar · View at Scopus
  25. T. Fujisawa, S. Velichko, P. Thai, L.-Y. Hung, F. Huang, and R. Wu, “Regulation of airway MUC5AC expression by IL-1β and IL-17A; the NF-κB paradigm,” Journal of Immunology, vol. 183, no. 10, pp. 6236–6243, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Molet, Q. Hamid, F. Davoine et al., “IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines,” Journal of Allergy and Clinical Immunology, vol. 108, no. 3, pp. 430–438, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. S.-Y. Hwang, J.-Y. Kim, K.-W. Kim et al., “IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-kappaB- and PI3-kinase/Akt-dependent pathways,” Arthritis Research & Therapy, vol. 6, no. 2, pp. R120–128, 2004. View at Google Scholar · View at Scopus
  28. D. Toy, D. Kugler, M. Wolfson et al., “Cutting edge: interleukin 17 signals through a heteromeric receptor complex,” Journal of Immunology, vol. 177, no. 1, pp. 36–39, 2006. View at Google Scholar · View at Scopus
  29. A. W. Ho and S. L. Gaffen, “IL-17RC: a partner in IL-17 signaling and beyond,” Seminars in Immunopathology, vol. 32, no. 1, pp. 33–42, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. H. H. Hofstetter, S. M. Ibrahim, D. Koczan et al., “Therapeutic efficacy of IL-17 neutralization in murine experimental autoimmune encephalomyelitis,” Cellular Immunology, vol. 237, no. 2, pp. 123–130, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Chabaud, P. Garnero, J.-M. Dayer, P.-A. Guerne, F. Fossiez, and P. Miossec, “Contribution of interleukin 17 to synovium matrix destruction in rheumatoid arthritis,” Cytokine, vol. 12, no. 7, pp. 1092–1099, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Hu, F. Shen, N. K. Crellin, and W. Ouyang, “The IL-17 pathway as a major therapeutic target in autoimmune diseases,” Annals of the New York Academy of Sciences, vol. 1217, no. 1, pp. 60–76, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Sergejeva, S. Ivanov, J. Lötvall, and A. Lindén, “Interleukin-17 as a recruitment and survival factor for airway macrophages in allergic airway inflammation,” American Journal of Respiratory Cell and Molecular Biology, vol. 33, no. 3, pp. 248–253, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Laan, L. Palmberg, K. Larsson, and A. Lindén, “Free, soluble interleukin-17 protein during severe inflammation in human airways,” European Respiratory Journal, vol. 19, no. 3, pp. 534–537, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. R. He, M. K. Oyoshi, H. Jin, and R. S. Geha, “Epicutaneous antigen exposure induces a Th17 response that drives airway inflammation after inhalation challenge,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 40, pp. 15817–15822, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Brodlie, M. C. McKean, G. E. Johnson et al., “Raised interleukin-17 is immunolocalised to neutrophils in cystic fibrosis lung disease,” European Respiratory Journal, vol. 37, no. 6, pp. 1378–1385, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. H.-L. Tan, N. Regamey, S. Brown, A. Bush, C. M. Lloyd, and J. C. Davies, “The Th17 pathway in cystic fibrosis lung disease,” American Journal of Respiratory and Critical Care Medicine, vol. 184, no. 2, pp. 252–258, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. M. A. Kleinschek, K. Boniface, S. Sadekova et al., “Circulating and gut-resident human Th17 cells express CD161 and promote intestinal inflammation,” Journal of Experimental Medicine, vol. 206, no. 3, pp. 525–534, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Kobayashi, S. Okamoto, T. Hisamatsu et al., “IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn's disease,” Gut, vol. 57, no. 12, pp. 1682–1689, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. F. McAllister, A. Henry, J. L. Kreindler et al., “Role of IL-17A, IL-17F, and the IL-17 receptor in regulating growth-related oncogene-α and granulocyte colony-stimulating factor in bronchial epithelium: implications for airway inflammation in cystic fibrosis,” Journal of Immunology, vol. 175, no. 1, pp. 404–412, 2005. View at Google Scholar · View at Scopus
  41. L. E. Harrington, R. D. Hatton, P. R. Mangan et al., “Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages,” Nature Immunology, vol. 6, no. 11, pp. 1123–1132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Park, Z. Li, X. O. Yang et al., “A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17,” Nature Immunology, vol. 6, no. 11, pp. 1133–1141, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. E. Bettelli, Y. Carrier, W. Gao et al., “Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells,” Nature, vol. 441, no. 7090, pp. 235–238, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. P. R. Mangan, L. E. Harrington, D. B. O'Quinn et al., “Transforming growth factor-β induces development of the T H17 lineage,” Nature, vol. 441, no. 7090, pp. 231–234, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. X. O. Yang, A. D. Panopoulos, R. Nurieva et al., “STAT3 regulates cytokine-mediated generation of inflammatory helper T cells,” Journal of Biological Chemistry, vol. 282, no. 13, pp. 9358–9363, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Korn, E. Bettelli, W. Gao et al., “IL-21 initiates an alternative pathway to induce proinflammatory T H17 cells,” Nature, vol. 448, no. 7152, pp. 484–487, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. L. Wei, A. Laurence, K. M. Elias, and J. J. O'Shea, “IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner,” Journal of Biological Chemistry, vol. 282, no. 48, pp. 34605–34610, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Chung, S. H. Chang, G. J. Martinez et al., “Critical regulation of early Th17 cell differentiation by interleukin-1 signaling,” Immunity, vol. 30, no. 4, pp. 576–587, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. E. de Jong, T. Suddason, and G. M. Lord, “Translational mini-review series on Th17 Cells: development of mouse and human T helper 17 cells,” Clinical and Experimental Immunology, vol. 159, no. 2, pp. 148–158, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. L. Cosmi, R. De Palma, V. Santarlasci et al., “Human interleukin 17-producing cells originate from a CD161+CD4+ T cell precursor,” Journal of Experimental Medicine, vol. 205, no. 8, pp. 1903–1916, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. E. V. Acosta-Rodriguez, G. Napolitani, A. Lanzavecchia, and F. Sallusto, “Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17-producing human T helper cells,” Nature Immunology, vol. 8, no. 9, pp. 942–949, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. E. Volpe, N. Servant, R. Zollinger et al., “A critical function for transforming growth factor-β, interleukin 23 and proinflammatory cytokines in driving and modulating human TH-17 responses,” Nature Immunology, vol. 9, no. 6, pp. 650–657, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. V. Santarlasci, L. Maggi, M. Capone et al., “TGF-β indirectly favors the development of human Th17 cells by inhibiting Th1 cells,” European Journal of Immunology, vol. 39, no. 1, pp. 207–215, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. N. Manel, D. Unutmaz, and D. R. Littman, “The differentiation of human TH-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt,” Nature Immunology, vol. 9, no. 6, pp. 641–649, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. L. Zhou, J. E. Lopes, M. M. W. Chong et al., “TGF-Β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function,” Nature, vol. 453, no. 7192, pp. 236–240, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. E. S. Hwang, “Transcriptional regulation of T helper 17 cell differentiation,” Yonsei Medical Journal, vol. 51, no. 4, pp. 484–491, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. V. Lazarevic, X. Chen, J.-H. Shim et al., “T-bet represses TH 17 differentiation by preventing Runx1-mediated activation of the gene encoding RORγt,” Nature Immunology, vol. 12, no. 1, pp. 96–104, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. B. U. Schraml, K. Hildner, W. Ise et al., “The AP-1 transcription factor Batf controls T H 17 differentiation,” Nature, vol. 460, no. 7253, pp. 405–409, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. I. I. Ivanov, B. S. McKenzie, L. Zhou et al., “The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells,” Cell, vol. 126, no. 6, pp. 1121–1133, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. K. Ichiyama, H. Yoshida, Y. Wakabayashi et al., “Foxp3 inhibits RORγt-mediated IL-17A mRNA transcription through direct interaction with RORγt,” Journal of Biological Chemistry, vol. 283, no. 25, pp. 17003–17008, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Veldhoen, K. Hirota, J. Christensen, A. O'Garra, and B. Stockinger, “Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of Th17 T cells,” Journal of Experimental Medicine, vol. 206, no. 1, pp. 43–49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Brüstle, S. Heink, M. Huber et al., “The development of inflammatory TH-17 cells requires interferon-regulatory factor 4,” Nature Immunology, vol. 8, no. 9, pp. 958–966, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Huber, A. Brüstle, K. Reinhard et al., “IRF4 is essential for IL-21-mediated induction, amplification, and stabilization of the Th17 phenotype,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 52, pp. 20846–20851, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. A.-N. N. Ahyi, H.-C. Chang, A. L. Dent, S. L. Nutt, and M. H. Kaplan, “IFN regulatory factor 4 regulates the expression of a subset of Th2 cytokines,” Journal of Immunology, vol. 183, no. 3, pp. 1598–1606, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. C. Neufert, C. Becker, S. Wirtz et al., “IL-27 controls the development of inducible regulatory T cells and Th17 cells via differential effects on STAT1,” European Journal of Immunology, vol. 37, no. 7, pp. 1809–1816, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. C. Diveu, M. J. McGeachy, K. Boniface et al., “IL-27 blocks RORc expression to inhibit lineage commitment of Th17 cells,” Journal of Immunology, vol. 182, no. 9, pp. 5748–5756, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. A. Laurence, C. M. Tato, T. S. Davidson et al., “Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation,” Immunity, vol. 26, no. 3, pp. 371–381, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. X.-P. Yang, K. Ghoreschi, S. M. Steward-Tharp et al., “Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5,” Nature Immunology, vol. 12, no. 3, pp. 247–254, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. T. Korn, E. Bettelli, M. Oukka, and V. K. Kuchroo, “IL-17 and Th17 cells,” Annual Review of Immunology, vol. 27, pp. 485–517, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. Y. Zheng, P. A. Valdez, D. M. Danilenko et al., “Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens,” Nature Medicine, vol. 14, no. 3, pp. 282–289, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. L. A. Solt, T. M. Kamenecka, and T. P. Burris, “LXR-mediated inhibition of CD4+ T helper cells,” PLoS ONE, vol. 7, no. 9, Article ID e46615, 2012. View at Google Scholar
  72. L. A. Solt, N. Kumar, P. Nuhant et al., “Suppression of TH 17 differentiation and autoimmunity by a synthetic ROR ligand,” Nature, vol. 472, no. 7344, pp. 491–494, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. Z. Yao, S. L. Painter, W. C. Fanslow et al., “Human IL-17: a novel cytokine derived from T cells,” Journal of Immunology, vol. 155, no. 12, pp. 5483–5486, 1995. View at Google Scholar · View at Scopus
  74. E. Rouvier, M.-F. Luciani, M.-G. Mattei, F. Denizot, and P. Golstein, “CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus Saimiri gene,” Journal of Immunology, vol. 150, no. 12, pp. 5445–5456, 1993. View at Google Scholar · View at Scopus
  75. S. Aggarwal and A. L. Gurney, “IL-17: prototype member of an emerging cytokine family,” Journal of Leukocyte Biology, vol. 71, no. 1, pp. 1–8, 2002. View at Google Scholar · View at Scopus
  76. J. M. Reynolds, P. Angkasekwinai, and C. Dong, “IL-17 family member cytokines: regulation and function in innate immunity,” Cytokine and Growth Factor Reviews, vol. 21, no. 6, pp. 413–423, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. R. E. Kuestner, D. W. Taft, A. Haran et al., “Identification of the IL-17 receptor related molecule IL-17RC as the receptor for IL-17F,” Journal of Immunology, vol. 179, no. 8, pp. 5462–5473, 2007. View at Google Scholar · View at Scopus
  78. J. M. Kramer, L. Yi, F. Shen et al., “Cutting edge: evidence for ligand-independent multimerization of the IL-17 receptor,” Journal of Immunology, vol. 176, no. 2, pp. 711–715, 2006. View at Google Scholar · View at Scopus
  79. J. M. Kramer, W. Hanel, F. Shen et al., “Cutting edge: identification of a pre-ligand assembly domain (PLAD) and ligand binding site in the IL-17 receptor,” Journal of Immunology, vol. 179, no. 10, pp. 6379–6383, 2007. View at Google Scholar · View at Scopus
  80. F. Shen and S. L. Gaffen, “Structure-function relationships in the IL-17 receptor: implications for signal transduction and therapy,” Cytokine, vol. 41, no. 2, pp. 92–104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. S. Zrioual, M.-L. Toh, A. Tournadre et al., “IL-17RA and IL-17RC receptors are essential for IL-17A-induced ELR+ CXC chemokine expression in synoviocytes and are overexpressed in rheumatoid blood 1,” Journal of Immunology, vol. 180, no. 1, pp. 655–663, 2008. View at Google Scholar · View at Scopus
  82. J. Lee, W.-H. Ho, M. Maruoka et al., “IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1,” Journal of Biological Chemistry, vol. 276, no. 2, pp. 1660–1664, 2001. View at Publisher · View at Google Scholar · View at Scopus
  83. Y. Yamaguchi, K. Fujio, H. Shoda et al., “IL-17B and IL-17C are associated with TNF-α production and contribute to the exacerbation of inflammatory arthritis,” Journal of Immunology, vol. 179, no. 10, pp. 7128–7136, 2007. View at Google Scholar · View at Scopus
  84. S. H. Chang, J. M. Reynolds, B. P. Pappu, G. Chen, G. J. Martinez, and C. Dong, “Interleukin-17C promotes Th17 cell responses and autoimmune disease via interleukin-17 receptor E,” Immunity, vol. 35, no. 4, pp. 611–621, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. V. Ramirez-Carrozzi, A. Sambandam, E. Luis et al., “IL-17C regulates the innate immune function of epithelial cells in an autocrine manner,” Nature Immunology, vol. 12, no. 12, pp. 1159–1166, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. X. Song, S. Zhu, P. Shi et al., “IL-17RE is the functional receptor for IL-17C and mediates mucosal immunity to infection with intestinal pathogens,” Nature Immunology, vol. 12, no. 12, pp. 1151–1158, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. T. Starnes, H. E. Broxmeyer, M. J. Robertson, and R. Hromas, “Cutting edge: IL-17D, a novel member of the IL-17 family, stimulates cytokine production and inhibits hemopoiesis,” Journal of Immunology, vol. 169, no. 2, pp. 642–646, 2002. View at Google Scholar · View at Scopus
  88. S. L. Gaffen, “Structure and signalling in the IL-17 receptor family,” Nature Reviews Immunology, vol. 9, no. 8, pp. 556–567, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. L. K. Ely, S. Fischer, and K. C. Garcia, “Structural basis of receptor sharing by interleukin 17 cytokines,” Nature Immunology, vol. 10, no. 12, pp. 1245–1251, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Novatchkova, A. Leibbrandt, J. Werzowa, A. Neubüser, and F. Eisenhaber, “The STIR-domain superfamily in signal transduction, development and immunity,” Trends in Biochemical Sciences, vol. 28, no. 5, pp. 226–229, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. A. Mansell, E. Brint, J. A. Gould, L. A. O'Neill, and P. J. Hertzog, “Mal interacts with tumor necrosis factor receptor-associated factor (TRAF)-6 to mediate NF-κB activation by Toll-like receptor (TLR)-2 and TLR4,” Journal of Biological Chemistry, vol. 279, no. 36, pp. 37227–37230, 2004. View at Publisher · View at Google Scholar · View at Scopus
  92. L. A. J. O'Neill and A. G. Bowie, “The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling,” Nature Reviews Immunology, vol. 7, no. 5, pp. 353–364, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. V. Y. Toshchakov and S. N. Vogel, “Cell-penetrating TIR BB loop decoy peptides: a novel class of TLR signaling inhibitors and a tool to study topology of TIR-TIR interactions,” Expert Opinion on Biological Therapy, vol. 7, no. 7, pp. 1035–1050, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. A. Maitra, F. Shen, W. Hanel et al., “Distinct functional motifs within the IL-17 receptor regulate signal transduction and target gene expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 18, pp. 7506–7511, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. F. Shen, N. Li, P. Gade et al., “IL-17 receptor signaling inhibits C/EBPb by sequential phosphorylation of the regulatory 2 domain,” Science Signaling, vol. 2, no. 59, p. ra8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. S. Swaidani, K. Bulek, Z. Kang et al., “The critical role of epithelial-derived Act1 in IL-17- and IL-25-mediated pulmonary inflammation,” Journal of Immunology, vol. 182, no. 3, pp. 1631–1640, 2009. View at Google Scholar · View at Scopus
  97. S. H. Chang, H. Park, and C. Dong, “Act1 adaptor protein is an immediate and essential signaling component of interleukin-17 receptor,” Journal of Biological Chemistry, vol. 281, no. 47, pp. 35603–35607, 2006. View at Publisher · View at Google Scholar · View at Scopus
  98. Y. Qian, C. Liu, J. Hartupee et al., “The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease,” Nature Immunology, vol. 8, no. 3, pp. 247–256, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. C. Liu, S. Swaidani, W. Qian et al., “A CC' loop decoy peptide blocks the interaction between Act1 and IL-17RA to attenuate IL-17- and IL-25-induced inflammation,” Science Signaling, vol. 4, no. 197, article ra72, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. A. W. Ho, F. Shen, H. R. Conti et al., “IL-17RC is required for immune signaling via an extended SEF/IL-17R signaling domain in the cytoplasmic tail,” Journal of Immunology, vol. 185, no. 2, pp. 1063–1070, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. R. Schwandner, K. Yamaguchi, and Z. Cao, “Requirement of tumor necrosis factor receptor-associated factor (TRAF)6 in interleukin 17 signal transduction,” Journal of Experimental Medicine, vol. 191, no. 7, pp. 1233–1239, 2000. View at Publisher · View at Google Scholar · View at Scopus
  102. S. Zhu, W. Pan, P. Shi et al., “Modulation of experimental autoimmune encephalomyelitis through TRAF3-mediated suppression of interleukin 17 receptor signaling,” Journal of Experimental Medicine, vol. 207, no. 12, pp. 2647–2662, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. C. Liu, W. Qian, Y. Qian et al., “Act1, a U-box E3 ubiquitin ligase for IL-17 signaling,” Science Signaling, vol. 2, no. 92, p. ra63, 2009. View at Google Scholar · View at Scopus
  104. S. U. Sønder, S. Saret, W. Tang, D. E. Sturdevant, S. F. Porcella, and U. Siebenlist, “IL-17-induced NF-κB activation via CIKS/Act1 physiologic significance and signaling mechanisms,” Journal of Biological Chemistry, vol. 286, no. 15, pp. 12881–12890, 2011. View at Publisher · View at Google Scholar · View at Scopus
  105. C.-Y. Kao, C. Kim, F. Huang, and R. Wu, “Requirements for two proximal NF-κB binding sites and IκB-ζ in IL-17A-induced human β-defensin 2 expression by conducting airway epithelium,” Journal of Biological Chemistry, vol. 283, no. 22, pp. 15309–15318, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. Y. Zhou, M.-L. Toh, S. Zrioual, and P. Miossec, “IL-17A versus IL-17F induced intracellular signal transduction pathways and modulation by IL-17RA and IL-17RC RNA interference in AGS gastric adenocarcinoma cells,” Cytokine, vol. 38, no. 3, pp. 157–164, 2007. View at Publisher · View at Google Scholar · View at Scopus
  107. A. Hot, S. Zrioual, M.-L. Toh, V. Lenief, and P. Miossec, “IL-17A- versus IL-17F-induced intracellular signal transduction pathways and modulation by IL-17RA and IL-17RC RNA interference in rheumatoid synoviocytes,” Annals of the Rheumatic Diseases, vol. 70, no. 2, pp. 341–348, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. Y. Chen, P. Thai, Y.-H. Zhao, Y.-S. Ho, M. M. DeSouza, and R. Wu, “Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop,” Journal of Biological Chemistry, vol. 278, no. 19, pp. 17036–17043, 2003. View at Publisher · View at Google Scholar · View at Scopus
  109. C.-Y. Kao, F. Huang, Y. Chen et al., “Up-regulation of CC chemokine ligand 20 expression in human airway epithelium by IL-17 through a JAK-independent but MEK/NF-κB-dependent signaling pathway,” Journal of Immunology, vol. 175, no. 10, pp. 6676–6685, 2005. View at Google Scholar · View at Scopus
  110. F. Huang, S. Wachi, P. Thai et al., “Potentiation of IL-19 expression in airway epithelia by IL-17A and IL-4/IL-13: important implications in asthma,” Journal of Allergy and Clinical Immunology, vol. 121, no. 6, pp. 1415–1421, 2008. View at Publisher · View at Google Scholar · View at Scopus
  111. M. Laan, J. Lotvall, K. F. Chung, and A. Linden, “IL-17-induced cytokine release in human bronchial epithelial cells in vitro: role of mitogen-activated protein (MAP) kinases,” British Journal of Pharmacology, vol. 133, no. 1, pp. 200–206, 2001. View at Google Scholar
  112. O. Prause, M. Laan, J. Lötvall, and A. Lindén, “Pharmacological modulation of interleukin-17-induced GCP-2-, GRO-α- and interleukin-8 release in human bronchial epithelial cells,” European Journal of Pharmacology, vol. 462, no. 1–3, pp. 193–198, 2003. View at Publisher · View at Google Scholar · View at Scopus
  113. J. Hartupee, C. Liu, M. Novotny, X. Li, and T. Hamilton, “IL-17 enhances chemokine gene expression through mRNA stabilization,” Journal of Immunology, vol. 179, no. 6, pp. 4135–4141, 2007. View at Google Scholar · View at Scopus
  114. J. Hartupee, C. Liu, M. Novotny, D. Sun, X. Li, and T. A. Hamilton, “IL-17 signaling for mRNA stabilization does not require TNF receptor-associated factor 6,” Journal of Immunology, vol. 182, no. 3, pp. 1660–1666, 2009. View at Google Scholar · View at Scopus
  115. S. Datta, M. Novotny, P. G. Pavicic Jr. et al., “IL-17 regulates CXCL1 mRNA stability via an AUUUA/tristetraprolin-independent sequence,” Journal of Immunology, vol. 184, no. 3, pp. 1484–1491, 2010. View at Publisher · View at Google Scholar · View at Scopus
  116. R. M. Onishi, S. J. Park, W. Hanel, A. W. Ho, A. Maitra, and S. L. Gaffen, “SEF/IL-17R (SEFIR) is not enough: an extended SEFIR domain is required for IL-17RA-mediated signal transduction,” Journal of Biological Chemistry, vol. 285, no. 43, pp. 32751–32759, 2010. View at Publisher · View at Google Scholar · View at Scopus
  117. K. Bulek, C. Liu, S. Swaidani et al., “The inducible kinase IKKi is required for IL-17-dependent signaling associated with neutrophilia and pulmonary inflammation,” Nature Immunology, vol. 12, no. 9, pp. 844–852, 2011. View at Publisher · View at Google Scholar · View at Scopus
  118. F. Qu, H. Gao, S. Zhu et al., “TRAF6-dependent Act1 phosphorylation by the IkappaB kinase-related kinases suppresses interleukin-17-induced NF-kappaB activation,” Molecular and Cellular Biology, vol. 32, no. 19, pp. 3925–3937, 2012. View at Google Scholar
  119. D. Haudenschild, T. Moseley, L. Rose, and A. Hari Reddi, “Soluble and transmembrane isoforms of novel interleukin-17 receptor-like protein by RNA splicing and expression in prostate cancer,” Journal of Biological Chemistry, vol. 277, no. 6, pp. 4309–4316, 2002. View at Publisher · View at Google Scholar · View at Scopus
  120. H. Ishigame, S. Kakuta, T. Nagai et al., “Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses,” Immunity, vol. 30, no. 1, pp. 108–119, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. E. Silverpil, A. K. Wright, M. Hansson et al., “Negative feedback on IL-23 exerted by IL-17A during pulmonary inflammation,” Innate Immunity. In press.
  122. M. Ziolkowska, A. Koc, G. Luszczykiewicz et al., “High levels of IL-17 in rheumatoid arthritis patients: IL-15 triggers in vitro IL-17 production via cyclosporin A-sensitive mechanism,” Journal of Immunology, vol. 164, no. 5, pp. 2832–2838, 2000. View at Google Scholar · View at Scopus
  123. M. Chabaud, J. M. Durand, N. Buchs et al., “Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium,” Arthritis & Rheumatism, vol. 42, no. 5, pp. 963–970, 1999. View at Google Scholar
  124. S.-Y. Hwang and H.-Y. Kim, “Expression of IL-17 homologs and their receptors in the synovial cells of rheumatoid arthritis patients,” Molecules and Cells, vol. 19, no. 2, pp. 180–184, 2005. View at Google Scholar · View at Scopus
  125. F. Zhang, C.-L. Wang, Y. Koyama et al., “Compressive force stimulates the gene expression of IL-17s and their receptors in MC3T3-E1 cells,” Connective Tissue Research, vol. 51, no. 5, pp. 359–369, 2010. View at Publisher · View at Google Scholar · View at Scopus
  126. Z. Rong, A. Wang, Z. Li et al., “IL-17RD (Sef or IL-17RLM) interacts with IL-17 receptor and mediates IL-17 signaling,” Cell Research, vol. 19, no. 2, pp. 208–215, 2009. View at Publisher · View at Google Scholar · View at Scopus
  127. M. Mellett, P. Atzei, A. Horgan et al., “Orphan receptor IL-17RD tunes IL-17A signalling and is required for neutrophilia,” Nature Communications, vol. 3, p. 1119, 2012. View at Publisher · View at Google Scholar
  128. R. M. Onishi and S. L. Gaffen, “Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease,” Immunology, vol. 129, no. 3, pp. 311–321, 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. A. Doreau, A. Belot, J. Bastid et al., “Interleukin 17 acts in synergy with B cell-activating factor to influence B cell biology and the pathophysiology of systemic lupus erythematosus,” Nature Immunology, vol. 10, no. 7, pp. 778–785, 2009. View at Publisher · View at Google Scholar · View at Scopus
  130. D. V. Jovanovic, J. A. Di Battista, J. Martel-Pelletier et al., “Modulation of TIMP-1 synthesis by antiinflammatory cytokines and prostaglandin E2 in interleukin 17 stimulated human monocytes/macrophages,” Journal of Rheumatology, vol. 28, no. 4, pp. 712–718, 2001. View at Google Scholar · View at Scopus
  131. D. V. Jovanovic, J. Martel-Pelletier, J. A. Di Battista et al., “Stimulation of 92-kd gelatinase (matrix metalloproteinase 9) production by interleukin-17 in human monocyte/macrophages: a possible role in rheumatoid arthritis,” Arthritis & Rheumatism, vol. 43, no. 5, pp. 1134–1144, 2000. View at Google Scholar
  132. M. Laan, O. Prause, M. Miyamoto et al., “A role of GM-CSF in the accumulation of neutrophils in the airways caused by IL-17 and TNF-α,” European Respiratory Journal, vol. 21, no. 3, pp. 387–393, 2003. View at Google Scholar · View at Scopus
  133. P. Ye, F. H. Rodriguez, S. Kanaly et al., “Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense,” Journal of Experimental Medicine, vol. 194, no. 4, pp. 519–527, 2001. View at Publisher · View at Google Scholar · View at Scopus
  134. A. Lindén, M. Laan, and G. P. Anderson, “Neutrophils, interleukin-17A and lung disease,” European Respiratory Journal, vol. 25, no. 1, pp. 159–172, 2005. View at Publisher · View at Google Scholar · View at Scopus
  135. S. P. Singh, H. H. Zhang, J. F. Foley, M. N. Hedrick, and J. M. Farber, “Human T cells that are able to produce IL-17 express the chemokine receptor CCR6,” Journal of Immunology, vol. 180, no. 1, pp. 214–221, 2008. View at Google Scholar · View at Scopus
  136. S.-C. Liao, Y.-C. Cheng, Y.-C. Wang et al., “IL-19 induced Th2 cytokines and was up-regulated in asthma patients,” Journal of Immunology, vol. 173, no. 11, pp. 6712–6718, 2004. View at Google Scholar · View at Scopus
  137. K. M. Scanlon, R. J. Hawksworth, S. J. Lane, and B. P. Mahon, “IL-17A induces CCL28, supporting the chemotaxis of IgE-secreting B cells,” International Archives of Allergy and Immunology, vol. 156, no. 1, pp. 51–61, 2011. View at Publisher · View at Google Scholar · View at Scopus
  138. D. Inoue, M. Numasaki, M. Watanabe et al., “IL-17A promotes the growth of airway epithelial cells through ERK-dependent signaling pathway,” Biochemical and Biophysical Research Communications, vol. 347, no. 4, pp. 852–858, 2006. View at Publisher · View at Google Scholar · View at Scopus
  139. M. Kawaguchi, F. Kokubu, H. Kuga et al., “Modulation of bronchial epithelial cells by IL-17,” Journal of Allergy and Clinical Immunology, vol. 108, no. 5, pp. 804–809, 2001. View at Publisher · View at Google Scholar · View at Scopus
  140. T. Kinugasa, T. Sakaguchi, X. Gu, and H. Reinecker, “Claudins regulate the intestinal barrier in response to immune mediators,” Gastroenterology, vol. 118, no. 6, pp. 1001–1011, 2000. View at Google Scholar · View at Scopus
  141. M. Kudo, A. C. Melton, C. Chen et al., “IL-17A produced by αβ T cells drives airway hyper-responsiveness in mice and enhances mouse and human airway smooth muscle contraction,” Nature Medicine, vol. 18, no. 4, pp. 547–554, 2012. View at Publisher · View at Google Scholar · View at Scopus
  142. M. Numasaki, Y. Tomioka, H. Takahashi, and H. Sasaki, “IL-17 and IL-17F modulate GM-CSF production by lung microvascular endothelial cells stimulated with IL-1β and/or TNF-α,” Immunology Letters, vol. 95, no. 2, pp. 175–184, 2004. View at Publisher · View at Google Scholar · View at Scopus
  143. M. Numasaki, H. Takahashi, Y. Tomioka, and H. Sasaki, “Regulatory roles of IL-17 and IL-17F in G-CSF production by lung microvascular endothelial cells stimulated with IL-1β and/or TNF-α,” Immunology Letters, vol. 95, no. 1, pp. 97–104, 2004. View at Publisher · View at Google Scholar · View at Scopus
  144. H. Fujie, K. Niu, M. Ohba et al., “A distinct regulatory role of Th17 cytokines IL-17A and IL-17F in chemokine secretion from lung microvascular endothelial cells,” Inflammation, vol. 35, no. 3, pp. 1119–1131, 2012. View at Publisher · View at Google Scholar
  145. C. E. Jones and K. Chan, “Interleukin-17 stimulates the expression of interleukin-8, growth-related oncogene-α, and granulocyte-colony-stimulating factor by human airway epithelial cells,” American Journal of Respiratory Cell and Molecular Biology, vol. 26, no. 6, pp. 748–753, 2002. View at Google Scholar · View at Scopus
  146. E. M. Moran, R. Mullan, J. McCormick et al., “Human rheumatoid arthritis tissue production of IL-17A drives matrix and cartilage degradation: synergy with tumour necrosis factor-α, Oncostatin M and response to biologic therapies,” Arthritis Research and Therapy, vol. 11, no. 4, article R113, 2009. View at Publisher · View at Google Scholar · View at Scopus
  147. A. M. Woltman, S. De Haij, J. G. Boonstra, S. J. P. Gobin, M. R. Daha, and C. Van Kooten, “Interleukin-17 and CD40-Ligand synergistically enhance cytokine and chemokine production by renal epithelial cells,” Journal of the American Society of Nephrology, vol. 11, no. 11, pp. 2044–2055, 2000. View at Google Scholar · View at Scopus
  148. S. Mizunoe, T. Shuto, S. Suzuki et al., “and Toll-like receptor 2 and 4 signals to induce IL-8 expression in cystic fibrosis airway epithelial cells,” Journal of Pharmacological Sciences, vol. 118, no. 4, pp. 512–520, 2012. View at Google Scholar
  149. X. Zhou, Q. Chen, J. Moore, J. K. Kolls, S. Halperin, and J. Wang, “Critical role of the interleukin-17/interleukin-17 receptor axis in regulating host susceptibility to respiratory infection with Chlamydia species,” Infection and Immunity, vol. 77, no. 11, pp. 5059–5070, 2009. View at Publisher · View at Google Scholar · View at Scopus
  150. Q. Wu, R. J. Martin, J. G. Rino, R. Breed, R. M. Torres, and H. W. Chu, “IL-23-dependent IL-17 production is essential in neutrophil recruitment and activity in mouse lung defense against respiratory Mycoplasma pneumoniae infection,” Microbes and Infection, vol. 9, no. 1, pp. 78–86, 2007. View at Publisher · View at Google Scholar · View at Scopus
  151. X. Zhang, L. Gao, L. Lei et al., “A MyD88-dependent early IL-17 production protects mice against airway infection with the obligate intracellular pathogen Chlamydia muridarum,” Journal of Immunology, vol. 183, no. 2, pp. 1291–1300, 2009. View at Publisher · View at Google Scholar · View at Scopus
  152. P. Ye, P. B. Garvey, P. Zhang et al., “Interleukin-17 and lung host defense against Klebsiella pneumoniae infection,” American Journal of Respiratory Cell and Molecular Biology, vol. 25, no. 3, pp. 335–340, 2001. View at Google Scholar · View at Scopus
  153. A. Kudva, E. V. Scheller, K. M. Robinson et al., “Influenza A inhibits Th17-mediated host defense against bacterial pneumonia in mice,” Journal of Immunology, vol. 186, no. 3, pp. 1666–1674, 2011. View at Publisher · View at Google Scholar · View at Scopus
  154. W. Huang, L. Na, P. L. Fidel, and P. Schwarzenberger, “Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice,” Journal of Infectious Diseases, vol. 190, no. 3, pp. 624–631, 2004. View at Publisher · View at Google Scholar · View at Scopus
  155. H. R. Conti, F. Shen, N. Nayyar et al., “Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis,” Journal of Experimental Medicine, vol. 206, no. 2, pp. 299–311, 2009. View at Publisher · View at Google Scholar · View at Scopus
  156. Y. Miyazaki, S. Hamano, S. Wang, Y. Shimanoe, Y. Iwakura, and H. Yoshida, “IL-17 is necessary for host protection against acute-phase Trypanosoma cruzi infection,” Journal of Immunology, vol. 185, no. 2, pp. 1150–1157, 2010. View at Publisher · View at Google Scholar · View at Scopus
  157. C. E. Zielinski, F. Mele, D. Aschenbrenner et al., “Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β,” Nature, vol. 484, no. 7395, pp. 514–518, 2012. View at Publisher · View at Google Scholar · View at Scopus
  158. S. K. Datta, M. Sabet, K. P. L. Nguyen et al., “Mucosal adjuvant activity of cholera toxin requires Th17 cells and protects against inhalation anthrax,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 23, pp. 10638–10643, 2010. View at Publisher · View at Google Scholar · View at Scopus
  159. R. Gopal, J. Rangel-Moreno, S. Slight et al., “Interleukin-17-dependent CXCL13 mediates mucosal vaccine-induced immunity against tuberculosis,” Mucosal Immunology, 2013. View at Publisher · View at Google Scholar
  160. M. Raffatellu, R. L. Santos, D. E. Verhoeven et al., “Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut,” Nature Medicine, vol. 14, no. 4, pp. 421–428, 2008. View at Publisher · View at Google Scholar · View at Scopus
  161. K. Wolf, G. V. Plano, and K. A. Fields, “A protein secreted by the respiratory pathogen Chlamydia pneumoniae impairs IL-17 signalling via interaction with human Act1,” Cellular Microbiology, vol. 11, no. 5, pp. 769–779, 2009. View at Publisher · View at Google Scholar · View at Scopus
  162. D. J. Cua and C. M. Tato, “Innate IL-17-producing cells: the sentinels of the immune system,” Nature Reviews Immunology, vol. 10, no. 7, pp. 479–489, 2010. View at Publisher · View at Google Scholar · View at Scopus
  163. K. Hirota, H. Ahlfors, J. H. Duarte, and B. Stockinger, “Regulation and function of innate and adaptive interleukin-17-producing cells,” EMBO Reports, vol. 13, no. 2, pp. 113–120, 2012. View at Publisher · View at Google Scholar · View at Scopus
  164. C. E. Sutton, L. A. Mielke, and K. H. Mills, “IL-17-producing gammadelta T cells and innate lymphoid cells,” European Journal of Immunology, vol. 42, no. 9, pp. 2221–2231, 2012. View at Google Scholar
  165. C. E. Sutton, S. J. Lalor, C. M. Sweeney, C. F. Brereton, E. C. Lavelle, and K. H. G. Mills, “Interleukin-1 and IL-23 induce innate IL-17 production from γδ T cells, amplifying Th17 responses and autoimmunity,” Immunity, vol. 31, no. 2, pp. 331–341, 2009. View at Publisher · View at Google Scholar · View at Scopus
  166. N. Caccamo, C. La Mendola, V. Orlando et al., “Differentiation, phenotype, and function of interleukin-17-producing human vγ9vδ2 T cells,” Blood, vol. 118, no. 1, pp. 129–138, 2011. View at Publisher · View at Google Scholar · View at Scopus
  167. S. J. Lalor, L. S. Dungan, C. E. Sutton, S. A. Basdeo, J. M. Fletcher, and K. H. G. Mills, “Caspase-1-processed cytokines IL-1β and IL-18 promote IL-17 production by γδ and CD4 T cells that mediate autoimmunity,” Journal of Immunology, vol. 186, no. 10, pp. 5738–5748, 2011. View at Publisher · View at Google Scholar · View at Scopus
  168. M. Lochner, L. Peduto, M. Cherrier et al., “In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORγt+ T cells,” Journal of Experimental Medicine, vol. 205, no. 6, pp. 1381–1393, 2008. View at Publisher · View at Google Scholar · View at Scopus
  169. B. Martin, K. Hirota, D. J. Cua, B. Stockinger, and M. Veldhoen, “Interleukin-17-producing γδ T cells selectively expand in response to pathogen products and environmental signals,” Immunity, vol. 31, no. 2, pp. 321–330, 2009. View at Publisher · View at Google Scholar · View at Scopus
  170. H. Spits, D. Artis, M. Colonna et al., “Innate lymphoid cells—a proposal for uniform nomenclature,” Nature Reviews Immunology, vol. 13, no. 2, pp. 145–149, 2013. View at Google Scholar
  171. J. A. Walker, J. L. Barlow, and A. N. McKenzie, “Innate lymphoid cells—how did we miss them?” Nature Reviews Immunology, vol. 13, no. 2, pp. 75–87, 2013. View at Google Scholar
  172. N. Satoh-Takayama, C. A. J. Vosshenrich, S. Lesjean-Pottier et al., “Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense,” Immunity, vol. 29, no. 6, pp. 958–970, 2008. View at Publisher · View at Google Scholar · View at Scopus
  173. M. Cella, A. Fuchs, W. Vermi et al., “A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity,” Nature, vol. 457, no. 7230, pp. 722–725, 2009. View at Publisher · View at Google Scholar · View at Scopus
  174. A. V. Rachitskaya, A. M. Hansen, R. Horai et al., “Cutting edge: NKT cells constitutively express IL-23 receptor and RORγt and rapidly produce IL-17 upon receptor ligation in an IL-6-independent fashion,” Journal of Immunology, vol. 180, no. 8, pp. 5167–5171, 2008. View at Google Scholar · View at Scopus
  175. M.-L. Michel, D. Mendes-da-Cruz, A. C. Keller et al., “Critical role of ROR-γt in a new thymic pathway leading to IL-17-producing invariant NKT cell differentiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 50, pp. 19845–19850, 2008. View at Publisher · View at Google Scholar · View at Scopus
  176. L. Campillo-Gimenez, M.-C. Cumont, M. Fay et al., “AIDS progression is associated with the emergence of IL-17-producing cells early after simian immunodeficiency virus infection,” Journal of Immunology, vol. 184, no. 2, pp. 984–992, 2010. View at Publisher · View at Google Scholar · View at Scopus
  177. J.-M. Doisne, V. Soulard, C. Bécourt et al., “Cutting edge: crucial role of IL-1 and IL-23 in the innate IL-17 response of peripheral lymph node NK1.1- invariant NKT cells to bacteria,” Journal of Immunology, vol. 186, no. 2, pp. 662–666, 2011. View at Publisher · View at Google Scholar · View at Scopus
  178. A. E. Price, R. L. Reinhardt, H. E. Liang, and R. M. Locksley, “Marking and quantifying IL-17A-producing cells in vivo,” PLoS ONE, vol. 7, no. 6, Article ID e39750, 2012. View at Google Scholar
  179. M. Peng, Z. Wang, C. Yao et al., “Interleukin 17-producing γδ T cells increased in patients with active pulmonary tuberculosis,” Cellular and Molecular Immunology, vol. 5, no. 3, pp. 203–208, 2008. View at Publisher · View at Google Scholar · View at Scopus
  180. Y. O. Yoshida, M. Umemura, A. Yahagi et al., “Essential role of IL-17A in the formation of a mycobacterial infection-induced granuloma in the lung,” Journal of Immunology, vol. 184, no. 8, pp. 4414–4422, 2010. View at Publisher · View at Google Scholar · View at Scopus
  181. K. Kawakami, N. Yamamoto, Y. Kinjo et al., “Critical role of Vα14+ natural killer T cells in the innate phase of host protection against Streptococcus pneumoniae infection,” European Journal of Immunology, vol. 33, no. 12, pp. 3322–3330, 2003. View at Publisher · View at Google Scholar · View at Scopus
  182. M. Umemura, A. Yahagi, S. Hamada et al., “IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis bacille Calmette-Guérin infection,” Journal of Immunology, vol. 178, no. 6, pp. 3786–3796, 2007. View at Google Scholar · View at Scopus
  183. S. A. Khader, G. K. Bell, J. E. Pearl et al., “IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge,” Nature Immunology, vol. 8, no. 4, pp. 369–377, 2007. View at Publisher · View at Google Scholar · View at Scopus