Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2013 (2013), Article ID 450963, 12 pages
http://dx.doi.org/10.1155/2013/450963
Review Article

Structural and Antigenic Definition of Hepatitis C Virus E2 Glycoprotein Epitopes Targeted by Monoclonal Antibodies

1Laboratorio di Microbiologia e Virologia, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milano, Italy
2School of Molecular Medical Sciences, The University of Nottingham, Nottingham NG7 2UH, UK
3Biomedical Research Unit in Gastrointestinal and Liver Diseases, The University of Nottingham, Nottingham NG7 2UH, UK

Received 9 May 2013; Accepted 10 June 2013

Academic Editor: Roberto Burioni

Copyright © 2013 Giuseppe Sautto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Bartosch, J. Dubuisson, and F.-L. Cosset, “Infectious hepatitis C virus pseudo-particles containing functional E1-E2 envelope protein complexes,” Journal of Experimental Medicine, vol. 197, no. 5, pp. 633–642, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Blanchard, S. Belouzard, L. Goueslain et al., “Hepatitis C virus entry depends on clathrin-mediated endocytosis,” Journal of Virology, vol. 80, no. 14, pp. 6964–6972, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Hsu, J. Zhang, M. Flint et al., “Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 12, pp. 7271–7276, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Lavillette, B. Bartosch, D. Nourrisson et al., “Hepatitis C virus glycoproteins mediate low pH-dependent membrane fusion with liposomes,” Journal of Biological Chemistry, vol. 281, no. 7, pp. 3909–3917, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Lavillette, A. W. Tarr, C. Voisset et al., “Characterization of host-range and cell entry properties of the major genotypes and subtypes of hepatitis C virus,” Hepatology, vol. 41, no. 2, pp. 265–274, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. J. McLauchlan, M. K. Lemberg, G. Hope, and B. Martoglio, “Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets,” EMBO Journal, vol. 21, no. 15, pp. 3980–3988, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Lavie, A. Goffard, and J. Dubuisson, “HCV glycoproteins: assembly of a functional E1-E2 heterodimer,” in Hepatitis C Viruses: Genomes and Molecular Biology, S. L. Tan, Ed., Norfolk, UK, 2006. View at Google Scholar
  8. J. Patel, A. H. Patel, and J. McLauchlan, “The transmembrane domain of the hepatitis C virus E2 glycoprotein is required for correct folding of the E1 glycoprotein and native complex formation,” Virology, vol. 279, no. 1, pp. 58–68, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. A. W. Tarr, R. A. Urbanowicz, M. R. Hamed et al., “Hepatitis C patient-derived glycoproteins exhibit marked differences in susceptibility to serum neutralizing antibodies: genetic subtype defines antigenic but not neutralization serotype,” Journal of Virology, vol. 85, no. 9, pp. 4246–4257, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. R. J. P. Brown, A. W. Tarr, C. P. McClure et al., “Cross-genotype characterization of genetic diversity and molecular adaptation in hepatitis C virus envelope glycoprotein genes,” Journal of General Virology, vol. 88, part 2, pp. 458–469, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. J. McAllister, C. Casino, F. Davidson et al., “Long-term evolution of the hypervariable region of hepatitis C virus in a common-source-infected cohort,” Journal of Virology, vol. 72, no. 6, pp. 4893–4905, 1998. View at Google Scholar · View at Scopus
  12. K. McCaffrey, H. Gouklani, I. Boo, P. Poumbourios, and H. E. Drummer, “The variable regions of hepatitis C virus glycoprotein E2 have an essential structural role in glycoprotein assembly and virion infectivity,” Journal of General Virology, vol. 92, part 1, pp. 112–121, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Brautigam, A. J. Scheidig, and W. Egge-Jacobsen, “Mass spectrometric analysis of hepatitis C viral envelope protein E2 reveals extended microheterogeneity of mucin-type O-linked glycosylation,” Glycobiology, vol. 23, no. 4, pp. 453–474, 2013. View at Publisher · View at Google Scholar
  14. F. Helle, G. Vieyres, L. Elkrief et al., “Role of N-linked glycans in the functions of hepatitis C virus envelope proteins incorporated into infectious virions,” Journal of Virology, vol. 84, no. 22, pp. 11905–11915, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. I. Benedicto, F. Molina-Jiménez, B. Bartosch et al., “The tight junction-associated protein occludin is required for a postbinding step in hepatitis C virus entry and infection,” Journal of Virology, vol. 83, no. 16, pp. 8012–8020, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Pileri, Y. Uematsu, S. Campagnoli et al., “Binding of hepatitis C virus to CD81,” Science, vol. 282, no. 5390, pp. 938–941, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Scarselli, H. Ansuini, R. Cerino et al., “The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus,” EMBO Journal, vol. 21, no. 19, pp. 5017–5025, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. H. E. Drummer, I. Boo, A. L. Maerz, and P. Poumbourios, “A conserved Gly436-Trp-Leu-Ala-Gly-Leu-Phe-Tyr motif in hepatitis C virus glycoprotein E2 is a determinant of CD81 binding and viral entry,” Journal of Virology, vol. 80, no. 16, pp. 7844–7853, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. A. M. Owsianka, J. M. Timms, A. W. Tarr et al., “Identification of conserved residues in the E2 envelope glycoprotein of the hepatitis C virus that are critical for CD81 binding,” Journal of Virology, vol. 80, no. 17, pp. 8695–8704, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. K. B. Rothwangl, B. Manicassamy, S. L. Uprichard, and L. Rong, “Dissecting the role of putative CD81 binding regions of E2 in mediating HCV entry: putative CD81 binding region 1 is not involved in CD81 binding,” Virology Journal, vol. 5, article 46, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Bartosch, A. Vitelli, C. Granier et al., “Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor,” Journal of Biological Chemistry, vol. 278, no. 43, pp. 41624–41630, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. A. T. Yagnik, A. Lahm, A. Meola et al., “A model for the hepatitis C virus envelope glycoprotein E2,” Proteins, vol. 40, no. 3, pp. 355–366, 2000. View at Google Scholar
  23. T. Krey, J. D'Alayer, C. M. Kikuti et al., “The disulfide bonds in glycoprotein E2 of hepatitis C virus reveal the tertiary organization of the molecule,” PLoS Pathogens, vol. 6, no. 2, Article ID e1000762, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. K. El Omari, O. Iourin, K. Harlos, J. M. Grimes, and D. I. Stuart, “Structure of a pestivirus envelope glycoprotein E2 clarifies its role in cell entry,” Cell Reports, vol. 3, no. 1, pp. 30–35, 2013. View at Google Scholar
  25. Y. Li, J. Wang, R. Kanai, and Y. Modis, “Crystal structure of glycoprotein E2 from bovine viral diarrhea virus,” Proceedings of the National Academy of Sciences of the United States of America, 2013. View at Publisher · View at Google Scholar
  26. E. Giang, M. Dorner, J. C. Prentoe et al., “Human broadly neutralizing antibodies to the envelope glycoprotein complex of hepatitis C virus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 16, pp. 6205–6210, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Liu, L.-X. Zhu, Y.-Y. Kong, G.-D. Li, and Y. Wang, “Purification and application of C-terminally truncated hepatitis C virus E1 proteins expressed in Escherichia coli,” World Journal of Gastroenterology, vol. 11, no. 4, pp. 503–507, 2005. View at Google Scholar · View at Scopus
  28. M. Flint, C. Maidens, L. D. Loomis-Price et al., “Characterization of hepatitis C virus E2 glycoprotein interaction with a putative cellular receptor, CD81,” Journal of Virology, vol. 73, no. 8, pp. 6235–6244, 1999. View at Google Scholar · View at Scopus
  29. D. Lavillette, E.-I. Pécheur, P. Donot et al., “Characterization of fusion determinants points to the involvement of three discrete regions of both E1 and E2 glycoproteins in the membrane fusion process of hepatitis C virus,” Journal of Virology, vol. 81, no. 16, pp. 8752–8765, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. V. C. Edwards, A. W. Tarr, R. A. Urbanowicz, and J. K. Ball, “The role of neutralizing antibodies in hepatitis C virus infection,” Journal of General Virology, vol. 93, part 1, pp. 1–19, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Fafi-Kremer, C. Fauvelle, D. J. Felmlee et al., “Neutralizing antibodies and pathogenesis of hepatitis C virus infection,” Viruses, vol. 4, no. 10, pp. 2016–2030, 2012. View at Google Scholar
  32. A. Owsianka, R. F. Clayton, L. D. Loomis-Price, J. A. McKeating, and A. H. Patel, “Functional analysis of hepatitis C virus E2 glycoproteins and virus-like particles reveals structural dissimilarities between different forms of E2,” Journal of General Virology, vol. 82, no. 8, pp. 1877–1883, 2001. View at Google Scholar · View at Scopus
  33. R. Eren, D. Landstein, D. Terkieltaub et al., “Preclinical evaluation of two neutralizing human monoclonal antibodies against hepatitis C virus (HCV): a potential treatment to prevent HCV reinfection in liver transplant patients,” Journal of Virology, vol. 80, no. 6, pp. 2654–2664, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Owsianka, A. W. Tarr, V. S. Juttla et al., “Monoclonal antibody AP33 defines a broadly neutralizing epitope on the hepatitis C virus E2 envelope glycoprotein,” Journal of Virology, vol. 79, no. 17, pp. 11095–11104, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. A. W. Tarr, A. M. Owsianka, J. M. Timms et al., “Characterization of the hepatitis C virus E2 epitope defined by the broadly neutralizing monoclonal antibody AP33,” Hepatology, vol. 43, no. 3, pp. 592–601, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Pantua, J. Diao, M. Ultsch et al., “Glycan shifting on hepatitis C virus (HCV) E2 glycoprotein is a mechanism for escape from broadly neutralizing antibodies,” Journal of Molecular Biology, vol. 425, no. 11, pp. 1899–1914, 2013. View at Google Scholar
  37. A. W. Tarr, R. A. Urbanowicz, D. Jayaraj et al., “Naturally occurring antibodies that recognize linear epitopes in the amino terminus of the hepatitis C virus E2 protein confer noninterfering, additive neutralization,” Journal of Virology, vol. 86, no. 5, pp. 2739–2749, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. M. C. Sabo, V. C. Luca, J. Prentoe et al., “Neutralizing monoclonal antibodies against hepatitis C Virus E2 protein bind discontinuous epitopes and inhibit infection at a postattachment step,” Journal of Virology, vol. 85, no. 14, pp. 7005–7019, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. T. J. Broering, K. A. Garrity, N. K. Boatright et al., “Identification and characterization of broadly neutralizing human monoclonal antibodies directed against the E2 envelope glycoprotein of hepatitis C virus,” Journal of Virology, vol. 83, no. 23, pp. 12473–12482, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Duan, A. Kachko, L. Zhong et al., “Amino acid residue-specific neutralization and nonneutralization of hepatitis C virus by monoclonal antibodies to the E2 protein,” Journal of Virology, vol. 86, no. 23, pp. 12686–12694, 2012. View at Publisher · View at Google Scholar
  41. L. Deng, L. Zhong, E. Struble et al., “Structural evidence for a bifurcated mode of action in the antibody-mediated neutralization of hepatitis C virus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 18, pp. 7418–7422, 2013. View at Google Scholar
  42. Z.-Y. Keck, A. Saha, J. Xia et al., “Mapping a region of hepatitis C virus E2 that is responsible for escape from neutralizing antibodies and a core CD81-binding region that does not tolerate neutralization escape mutations,” Journal of Virology, vol. 85, no. 20, pp. 10451–10463, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. K. G. Hadlock, R. E. Lanford, S. Perkins et al., “Human monoclonal antibodies that inhibit binding of hepatitis C virus E2 protein to CD81 and recognize conserved conformational epitopes,” Journal of Virology, vol. 74, no. 22, pp. 10407–10416, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. A. M. Owsianka, A. W. Tarr, Z.-Y. Keck et al., “Broadly neutralizing human monoclonal antibodies to the hepatitis C virus E2 glycoprotein,” Journal of General Virology, vol. 89, part 3, pp. 653–659, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. D. X. Johansson, C. Voisset, A. W. Tarr et al., “Human combinatorial libraries yield rare antibodies that broadly neutralize hepatitis C virus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 41, pp. 16269–16274, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Law, T. Maruyama, J. Lewis et al., “Broadly neutralizing antibodies protect against hepatitis C virus quasispecies challenge,” Nature Medicine, vol. 14, no. 1, pp. 25–27, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. Z. Keck, W. Wang, Y. Wang et al., “Cooperativity in virus neutralization by human monoclonal antibodies to two adjacent regions located at the amino terminus of hepatitis C virus E2 glycoprotein,” Journal of Virology, vol. 87, no. 1, pp. 37–51, 2013. View at Google Scholar
  48. T. Krey, A. Meola, Z. Y. Keck, L. Damier-Piolle, S. K. Foung, and F. A. Rey, “Structural basis of HCV neutralization by human monoclonal antibodies resistant to viral neutralization escape,” PLOS Pathogens, vol. 9, no. 5, Article ID e1003364, 2013. View at Google Scholar
  49. N. Mancini, R. A. Diotti, M. Perotti et al., “Hepatitis C virus (HCV) infection may elicit neutralizing antibodies targeting epitopes conserved in all viral genotypes,” PloS ONE, vol. 4, no. 12, Article ID e8254, 2009. View at Google Scholar · View at Scopus
  50. G. Sautto, N. Mancini, R. A. Diotti, L. Solforosi, M. Clementi, and R. Burioni, “Anti-hepatitis C virus E2 (HCV/E2) glycoprotein monoclonal antibodies and neutralization interference,” Antiviral Research, vol. 96, no. 1, pp. 82–89, 2012. View at Google Scholar
  51. R. A. Diotti, G. A. Sautto, L. Solforosi, N. Mancini, M. Clementi, and R. Burioni, “Neutralization activity and kinetics of two broad-range human monoclonal IgG1 derived from recombinant Fab fragments and directed against Hepatitis C virus E2 glycoprotein,” New Microbiologica, vol. 35, no. 4, pp. 475–479, 2012. View at Google Scholar
  52. M. Perotti, N. Mancini, R. A. Diotti et al., “Identification of a broadly cross-reacting and neutralizing human monoclonal antibody directed against the hepatitis C virus E2 protein,” Journal of Virology, vol. 82, no. 2, pp. 1047–1052, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. P. Garrone, A.-C. Fluckiger, P. E. Mangeot et al., “A prime-boost strategy using virus-like particles pseudotyped for HCV proteins triggers broadly neutralizing antibodies in macaques,” Science Translational Medicine, vol. 3, no. 94, Article ID 94ra71, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. R. F. Clayton, A. Owsianka, J. Aitken, S. Graham, D. Bhella, and A. H. Patel, “Analysis of antigenicity and topology of E2 glycoprotein present on recombinant hepatitis C virus-like particles,” Journal of Virology, vol. 76, no. 15, pp. 7672–7682, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. T. Allander, K. Drakenberg, A. Beyene et al., “Recombinant human monoclonal antibodies against different conformational epitopes of the E2 envelope glycoprotein of hepatitis C virus that inhibit its interaction with CD81,” Journal of General Virology, vol. 81, no. 10, pp. 2451–2459, 2000. View at Google Scholar · View at Scopus
  56. R. Burioni, N. Mancini, S. Carletti et al., “Cross-reactive pseudovirus-neutralizing anti-envelope antibodies coexist with antibodies devoid of such activity in persistent hepatitis C virus infection,” Virology, vol. 327, no. 2, pp. 242–248, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. R. Burioni, Y. Matsuura, N. Mancini et al., “Diverging effects of human recombinant anti-hepatitis C virus (HCV) antibody fragments derived from a single patient on the infectivity of a vesicular stomatitis virus/HCV pseudotype,” Journal of Virology, vol. 76, no. 22, pp. 11775–11779, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. Z. Y. Keck, J. Xia, Y. Wang et al., “Human monoclonal antibodies to a novel cluster of conformational epitopes on HCV E2 with resistance to neutralization escape in a genotype 2a isolate,” PLOS Pathogens, vol. 8, no. 4, Article ID e1002653, 2012. View at Google Scholar
  59. P. Farci, H. J. Alter, D. C. Wong et al., “Prevention of hepatitis C virus infection in chimpanzees after antibody-mediated in vitro neutralization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 16, pp. 7792–7796, 1994. View at Publisher · View at Google Scholar · View at Scopus
  60. P. Farci, A. Shimoda, A. Coiana et al., “The outcome of acute hepatitis C predicted by the evolution of the viral quasispecies,” Science, vol. 288, no. 5464, pp. 339–344, 2000. View at Publisher · View at Google Scholar · View at Scopus
  61. B. Bartosch, G. Verney, M. Dreux et al., “An interplay between hypervariable region 1 of the hepatitis C virus E2 glycoprotein, the scavenger receptor BI, and high-density lipoprotein promotes both enhancement of infection and protection against neutralizing antibodies,” Journal of Virology, vol. 79, no. 13, pp. 8217–8229, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. G. Koutsoudakis, S. Perez-del-Pulgar, M. Coto-Llerena et al., “Cell culture replication of a genotype 1b hepatitis C virus isolate cloned from a patient who underwent liver transplantation,” PloS ONE, vol. 6, no. 8, Article ID e23587, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. D. Bankwitz, E. Steinmann, J. Bitzegeio et al., “Hepatitis C virus hypervariable region 1 modulates receptor interactions, conceals the CD81 binding site, and protects conserved neutralizing epitopes,” Journal of Virology, vol. 84, no. 11, pp. 5751–5763, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. B. Bartosch, J. Bukh, J.-C. Meunier et al., “In vitro assay for neutralizing antibody to hepatitis C virus: evidence for broadly conserved neutralization epitopes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 2, pp. 14199–14204, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. G. Vieyres, J. Dubuisson, and A. H. Patel, “Characterization of antibody-mediated neutralization directed against the hypervariable region 1 of hepatitis C virus E2 glycoprotein,” Journal of General Virology, vol. 92, no. 3, pp. 494–506, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. E. Galun, N. A. Terrault, R. Eren et al., “Clinical evaluation (Phase I) of a human monoclonal antibody against hepatitis C virus: safety and antiviral activity,” Journal of Hepatology, vol. 46, no. 1, pp. 37–44, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. L. Kong, E. Giang, T. Nieusma et al., “Structure of hepatitis C virus envelope glycoprotein E2 antigenic site 412 to 423 in complex with antibody AP33,” Journal of Virology, vol. 86, no. 23, pp. 13085–13088, 2012. View at Google Scholar
  68. J. A. Potter, A. M. Owsianka, N. Jeffery et al., “Toward a hepatitis C virus vaccine: the structural basis of hepatitis C virus neutralization by AP33, a broadly neutralizing antibody,” Journal of Virology, vol. 86, no. 23, pp. 12923–12932, 2012. View at Google Scholar
  69. L. Kong, E. Giang, J. B. Robbins et al., “Structural basis of hepatitis C virus neutralization by broadly neutralizing antibody HCV1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 24, pp. 9499–9504, 2012. View at Google Scholar
  70. G. A. Sautto, R. A. Diotti, and M. Clementi, “New therapeutic options for HCV infection in the monoclonal antibody era,” New Microbiologica, vol. 35, no. 4, pp. 387–397, 2012. View at Google Scholar
  71. A. W. Tarr, A. M. Owsianka, D. Jayaraj et al., “Determination of the human antibody response to the epitope defined by the hepatitis C virus-neutralizing monoclonal antibody AP33,” Journal of General Virology, vol. 88, supplement 11, pp. 2991–3001, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. Z.-Y. Keck, A. Op De Beeck, K. G. Hadlock et al., “Hepatitis C virus E2 has three immunogenic domains containing conformational epitopes with distinct properties and biological functions,” Journal of Virology, vol. 78, no. 17, pp. 9224–9232, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. R. Burioni, P. Plaisant, A. Manzin et al., “Dissection of human humoral immune response against hepatitis C virus E2 glycoprotein by repertoire cloning and generation of recombinant Fab fragments,” Hepatology, vol. 28, no. 3, pp. 810–814, 1998. View at Google Scholar · View at Scopus
  74. K. G. Hadlock, R. Gish, J. Rowe et al., “Cross-reactivity and clinical impact of the antibody response to hepatitis C virus second envelope glycoprotein (E2),” Journal of Medical Virology, vol. 65, no. 1, pp. 23–29, 2001. View at Google Scholar
  75. L. Solforosi, N. Mancini, F. Canducci et al., “A phage display vector optimized for the generation of human antibody combinatorial libraries and the molecular cloning of monoclonal antibody fragments,” New Microbiologica, vol. 35, no. 3, pp. 289–294, 2012. View at Google Scholar
  76. A. W. Tarr, P. Lafaye, L. Meredith et al., “An alpaca nanobody inhibits hepatitis C virus entry and cell-to-cell transmission,” Hepatology, 2013. View at Publisher · View at Google Scholar
  77. J. Zhang, G. Randall, A. Higginbottom, P. Monk, C. M. Rice, and J. A. McKeating, “CD81 is required for hepatitis C virus glycoprotein-mediated viral infection,” Journal of Virology, vol. 78, no. 3, pp. 1448–1455, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. N. Clementi, N. Mancini, L. Solforosi, M. Castelli, M. Clementi, and R. Burioni, “Phage display-based strategies for cloning and optimization of monoclonal antibodies directed against human pathogens,” International Journal of Molecular Sciences, vol. 13, no. 7, pp. 8273–8292, 2012. View at Publisher · View at Google Scholar
  79. R. Dulbecco, M. Vogt, and A. G. R. Strickland, “A study of the basic aspects of neutralization of two animal viruses, Western equine encephalitis virus and poliomyelitis virus,” Virology, vol. 2, no. 2, pp. 162–205, 1956. View at Google Scholar · View at Scopus
  80. F. Verrier, A. Nádas, M. K. Gorny, and S. Zolla-Pazner, “Additive effects characterize the interaction of antibodies involved in neutralization of the primary dualtropic human immunodeficiency virus type 1 isolate 89.6,” Journal of Virology, vol. 75, no. 19, pp. 9177–9186, 2001. View at Publisher · View at Google Scholar · View at Scopus
  81. K. K. To, A. J. Zhang, I. F. Hung et al., “High titer and avidity of nonneutralizing antibodies against influenza vaccine antigen are associated with severe influenza,” Clinical and Vaccine Immunology, vol. 19, no. 7, pp. 1012–1018, 2012. View at Google Scholar
  82. W. Ndifon, N. S. Wingreen, and S. A. Levin, “Differential neutralization efficiency of hemagglutinin epitopes, antibody interference, and the design of influenza vaccines,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 21, pp. 8701–8706, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. N. Mancini, G. Sautto, N. Clementi et al., “Neutralization interfering antibodies: a, “novel” example of humoral immune dysfunction facilitating viral escape?” Viruses, vol. 4, no. 9, pp. 1731–1752, 2012. View at Publisher · View at Google Scholar
  84. N. Clementi, E. Criscuolo, M. Castelli, N. Mancini, M. Clementi, and R. Burioni, “Influenza B-cells protective epitope characterization: a passkey for the rational design of new broad-range anti-influenza vaccines,” Viruses, vol. 4, no. 11, pp. 3090–3108, 2012. View at Publisher · View at Google Scholar
  85. G. Sautto, N. Mancini, L. Solforosi, R. A. Diotti, M. Clementi, and R. Burioni, “HCV proteins and immunoglobulin variable gene (IgV) subfamilies in HCV-induced type II mixed cryoglobulinemia: a concurrent pathogenetic role,” Clinical and Developmental Immunology, vol. 2012, Article ID 705013, 11 pages, 2012. View at Publisher · View at Google Scholar
  86. G. Sautto, N. Mancini, M. Clementi, and R. Burioni, “Molecular signatures of hepatitis C virus (HCV)-induced type II mixed cryoglobulinemia (MCII),” Viruses, vol. 4, no. 11, pp. 2924–2944, 2012. View at Google Scholar
  87. N. Clementi, N. Mancini, M. Castelli, M. Clementi, and R. Burioni, “Characterization of epitopes recognized by monoclonal antibodies: experimental approaches supported by freely accessible bioinformatic tools,” Drug Discovery Today, vol. 18, no. 9-10, pp. 464–471, 2013. View at Google Scholar
  88. R. Burioni, F. Bugli, N. Mancini et al., “Nonneutralizing human antibody fragments against hepatitis C virus E2 glycoprotein modulate neutralization of binding activity of human recombinant Fabs,” Virology, vol. 288, no. 1, pp. 29–35, 2001. View at Publisher · View at Google Scholar · View at Scopus
  89. P. Zhang, L. Zhong, E. B. Struble et al., “Depletion of interfering antibodies in chronic hepatitis C patients and vaccinated chimpanzees reveals broad cross-genotype neutralizing activity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 18, pp. 7537–7541, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. P. Lapierre, M. Troesch, F. Alvarez, and H. Soudeyns, “Structural basis for broad neutralization of hepatitis c virus quasispecies,” PloS ONE, vol. 6, no. 10, Article ID e26981, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. T. J. Morin, T. J. Broering, B. A. Leav et al., “Human monoclonal antibody HCV1 effectively prevents and treats HCV infection in chimpanzees,” PLOS Pathogens, vol. 8, no. 8, Article ID e1002895, 2012. View at Google Scholar
  92. R. T. Chung, F. D. Gordon, M. P. Curry et al., “Human Monoclonal Antibody MBL-HCV1 delays HCV viral rebound following liver transplantation: a randomized controlled study,” American Journal of Transplantation, vol. 13, no. 4, pp. 1047–1054, 2013. View at Google Scholar
  93. J. Dubuisson, H. H. Hsu, R. C. Cheung, H. B. Greenberg, D. G. Russell, and C. M. Rice, “Formation and intracellular localization of hepatitis C virus envelope glycoprotein complexes expressed by recombinant vaccinia and sindbis viruses,” Journal of Virology, vol. 68, no. 10, pp. 6147–6160, 1994. View at Google Scholar · View at Scopus
  94. Z.-Y. Keck, V. M. H. Sung, S. Perkins et al., “Human monoclonal antibody to hepatitis C virus E1 glycoprotein that blocks virus attachment and viral infectivity,” Journal of Virology, vol. 78, no. 13, pp. 7257–7263, 2004. View at Publisher · View at Google Scholar · View at Scopus
  95. J.-C. Meunier, R. S. Russell, V. Goossens et al., “Isolation and characterization of broadly neutralizing human monoclonal antibodies to the E1 glycoprotein of hepatitis C virus,” Journal of Virology, vol. 82, no. 2, pp. 966–973, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. C. L. Brimacombe, J. Grove, L. W. Meredith et al., “Neutralizing antibody-resistant hepatitis C virus cell-to-cell transmission,” Journal of Virology, vol. 85, no. 1, pp. 596–605, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. P. K. Chandra, S. Hazari, B. Poat et al., “Intracytoplasmic stable expression of IgG1 antibody targeting NS3 helicase inhibits replication of highly efficient hepatitis C Virus 2a clone,” Virology Journal, vol. 7, article 118, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. R. Prabhu, N. Khalap, R. Burioni, M. Clementi, R. F. Garry, and S. Dash, “Inhibition of hepatitis C virus nonstructural protein, helicase activity, and viral replication by a recombinant human antibody clone,” American Journal of Pathology, vol. 165, no. 4, pp. 1163–1173, 2004. View at Google Scholar · View at Scopus
  99. P. Halfon and S. Locarnini, “Hepatitis C virus resistance to protease inhibitors,” Journal of Hepatology, vol. 55, no. 1, pp. 192–206, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. R. De Francesco, L. Tomei, S. Altamura, V. Summa, and G. Migliaccio, “Approaching a new era for hepatitis C virus therapy: inhibitors of the NS3-4A serine protease and the NS5B RNA-dependent RNA polymerase,” Antiviral Research, vol. 58, no. 1, pp. 1–16, 2003. View at Publisher · View at Google Scholar · View at Scopus
  101. I. Fofana, F. Xiao, C. Thumann et al., “A novel monoclonal anti-CD81 antibody produced by genetic immunization efficiently inhibits hepatitis C virus cell-cell transmission,” PLoS ONE, vol. 8, no. 5, Article ID e64221, 2013. View at Google Scholar