Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2013, Article ID 570731, 7 pages
http://dx.doi.org/10.1155/2013/570731
Review Article

Notch Signaling and T-Helper Cells in EAE/MS

Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA

Received 19 May 2013; Accepted 25 September 2013

Academic Editor: Carlos Barcia

Copyright © 2013 Ribal Bassil et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. J. Fleming, “Structural conservation of Notch receptors and ligands,” Seminars in Cell and Developmental Biology, vol. 9, no. 6, pp. 599–607, 1998. View at Google Scholar · View at Scopus
  2. C. J. Fryer, E. Lamar, I. Turbachova, C. Kintner, and K. A. Jones, “Mastermind mediates chromatin-specific transcription and turnover of the notch enhancer complex,” Genes and Development, vol. 16, no. 11, pp. 1397–1411, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. S. J. Bray, “Notch signalling: a simple pathway becomes complex,” Nature Reviews Molecular Cell Biology, vol. 7, no. 9, pp. 678–689, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Comabella and S. J. Khoury, “Immunopathogenesis of multiple sclerosis,” Clinical Immunology, vol. 142, no. 1, pp. 2–8, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. M. L. Kapsenberg, “Dendritic-cell control of pathogen-driven T-cell polarization,” Nature Reviews Immunology, vol. 3, no. 12, pp. 984–993, 2003. View at Google Scholar · View at Scopus
  6. H. Yamane and W. E. Paul, “Early signaling events that underlie fate decisions of naive CD4(+) T cells toward distinct T-helper cell subsets,” Immunological Reviews, vol. 252, no. 1, pp. 12–23, 2013. View at Publisher · View at Google Scholar
  7. J. Zhu, H. Yamane, and W. E. Paul, “Differentiation of effector CD4+ T cell populations,” Annual Review of Immunology, vol. 28, pp. 445–489, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Petermann and T. Korn, “Cytokines and effector T cell subsets causing autoimmune CNS disease,” FEBS Letters, vol. 585, no. 23, pp. 3747–3757, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Amsen, J. M. Blander, G. R. Lee, K. Tanigaki, T. Honjo, and R. A. Flavell, “Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells,” Cell, vol. 117, no. 4, pp. 515–526, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. L. M. Minter, D. M. Turley, P. Das et al., “Inhibitors of γ-secretase block in vivo and in vitro T helper type 1 polarization by preventing Notch upregulation of Tbx21,” Nature Immunology, vol. 6, no. 7, pp. 680–688, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. H. M. Shin, L. M. Minter, H. C. Ok et al., “Notch1 augments NF-κB activity by facilitating its nuclear retention,” EMBO Journal, vol. 25, no. 1, pp. 129–138, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Mukherjee, M. A. Schaller, R. Neupane, S. L. Kunkel, and N. W. Lukacs, “Regulation of T cell activation by notch ligand, DLL4, promotes IL-17 production and Rorc activation,” Journal of Immunology, vol. 182, no. 12, pp. 7381–7388, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Bassil, B. Zhu, Y. Lahoud et al., “Notch ligand delta-like 4 blockade alleviates experimental autoimmune encephalomyelitis by promoting regulatory T cell development,” Journal of Immunology, vol. 187, no. 5, pp. 2322–2328, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Billiard, C. Lobry, G. Darrasse-Jèze et al., “Dll4-Notch signaling in Flt3-independent dendritic cell development and autoimmunity in mice,” Journal of Experimental Medicine, vol. 209, no. 5, pp. 1011–1028, 2012. View at Publisher · View at Google Scholar
  15. S. Hue, H. Kared, Y. Mehwish, S. Mouhamad, M. Balbo, and Y. Levy, “Notch activation on effector T cells increases their sensitivity to Treg cell-mediated suppression through upregulation of TGF-betaRII expression,” European Journal of Immunology, vol. 42, no. 7, pp. 1796–1803, 2012. View at Publisher · View at Google Scholar
  16. D. Amsen, A. Antov, D. Jankovic et al., “Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch,” Immunity, vol. 27, no. 1, pp. 89–99, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. T. C. Fang, Y. Yashiro-Ohtani, C. Del Bianco, D. M. Knoblock, S. C. Blacklow, and W. S. Pear, “Notch directly regulates Gata3 expression during T helper 2 cell differentiation,” Immunity, vol. 27, no. 1, pp. 100–110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Vigouroux, E. Yvon, H. J. Wagner et al., “Induction of antigen-specific regulatory T cells following overexpression of a Notch ligand by human B lymphocytes,” Journal of Virology, vol. 77, no. 20, pp. 10872–10880, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Kared, H. Adle-Biassette, E. Foïs et al., “Jagged2-expressing hematopoietic progenitors promote regulatory T cell expansion in the periphery through notch signaling,” Immunity, vol. 25, no. 5, pp. 823–834, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Asano, T. Watanabe, A. Kitani, I. J. Fuss, and W. Strober, “Notch1 signaling and regulatory T cell function,” Journal of Immunology, vol. 180, no. 5, pp. 2796–2804, 2008. View at Google Scholar · View at Scopus
  21. W. Elyaman, R. Bassil, E. M. Bradshaw et al., “Notch receptors and Smad3 signaling cooperate in the induction of interleukin-9-producing T cells,” Immunity, vol. 36, no. 4, pp. 623–634, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. L. R. Perumalsamy, N. Marcel, S. Kulkarni, F. Radtke, and Sarin, “Distinct spatial and molecular features of notch pathway assembly in regulatory T cells,” Science Signaling, vol. 5, no. 234, article ra53, 2012. View at Publisher · View at Google Scholar
  23. F. Auderset, S. Schuster, M. Coutaz et al., “Redundant Notch1 and Notch2 signaling is necessary for IFNgamma secretion by T helper 1 cells during infection with Leishmania major,” PLoS Pathogens, vol. 8, no. 3, Article ID e1002560, 2012. View at Publisher · View at Google Scholar
  24. S. Wang, A. D. Sdrulla, G. DiSibio et al., “Notch receptor activation inhibits oligodendrocyte differentiation,” Neuron, vol. 21, no. 1, pp. 63–75, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Genoud, C. Lappe-Siefke, S. Goebbels et al., “Notch1 control of oligodendrocyte differentiation in the spinal cord,” Journal of Cell Biology, vol. 158, no. 4, pp. 709–718, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Zhang, A. T. Argaw, B. T. Gurfein et al., “Notch1 signaling plays a role in regulating precursor differentiation during CNS remyelination,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 45, pp. 19162–19167, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. A. G. Baxter, “The origin and application of experimental autoimmune encephalomyelitis,” Nature Reviews Immunology, vol. 7, no. 11, pp. 904–912, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. R. M. Ransohoff, “Animal models of multiple sclerosis: the good, the bad and the bottom line,” Nature Neuroscience, vol. 15, no. 8, pp. 1074–1077, 2012. View at Publisher · View at Google Scholar
  29. I. M. Stromnes and J. M. Goverman, “Active induction of experimental allergic encephalomyelitis,” Nature Protocols, vol. 1, no. 4, pp. 1810–1819, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. I. M. Stromnes and J. M. Goverman, “Passive induction of experimental allergic encephalomyelitis,” Nature Protocols, vol. 1, no. 4, pp. 1952–1960, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Keerthivasan, R. Suleiman, R. Lawlor et al., “Notch signaling regulates mouse and human Th17 differentiation,” Journal of Immunology, vol. 187, no. 2, pp. 692–701, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Jurynczyk, A. Jurewicz, C. S. Raine, and K. Selmaj, “Notch3 inhibition in myelin-reactive T cells down-regulates protein kinase Cθ and attenuates experimental autoimmune encephalomyelitis,” Journal of Immunology, vol. 180, no. 4, pp. 2634–2640, 2008. View at Google Scholar · View at Scopus
  33. D. Skokos and M. C. Nussenzweig, “CD8- DCs induce IL-12-independent Th1 differentiation through Delta 4 Notch-like ligand in response to bacterial LPS,” Journal of Experimental Medicine, vol. 204, no. 7, pp. 1525–1531, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Sun, C. J. Krawczyk, and E. J. Pearce, “Suppression of Th2 cell development by Notch ligands Delta1 and Delta4,” Journal of Immunology, vol. 180, no. 3, pp. 1655–1661, 2008. View at Google Scholar · View at Scopus
  35. W. Elyaman, E. M. Bradshaw, Y. Wang et al., “Jagged1 and delta1 differentially regulate the outcome of experimental autoimmune encephalomyelitis,” Journal of Immunology, vol. 179, no. 9, pp. 5990–5998, 2007. View at Google Scholar · View at Scopus
  36. S. Tsugane, S. Takizawa, T. Kaneyama et al., “Therapeutic effects of anti-Delta1 mAb on Theiler's murine encephalomyelitis virus-induced demyelinating disease,” Journal of Neuroimmunology, vol. 252, no. 1-2, pp. 66–74, 2012. View at Publisher · View at Google Scholar
  37. N. Takeichi, S. Yanagisawa, T. Kaneyama et al., “Ameliorating effects of anti-Dll4 mAb on Theiler's murine encephalomyelitis virus-induced demyelinating disease,” International Immunology, vol. 22, no. 9, pp. 729–738, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. N. D. Reynolds, N. W. Lukacs, N. Long, and W. J. Karpus, “Delta-like ligand 4 regulates central nervous system T cell accumulation during experimental autoimmune encephalomyelitis,” Journal of Immunology, vol. 187, no. 5, pp. 2803–2813, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Palacios, J. Goni, I. Martinez-Forero et al., “A network analysis of the human T-cell activation gene network identifies Jagged1 as a therapeutic target for autoimmune diseases,” PLoS ONE, vol. 2, no. 11, Article ID e1222, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Fukushima, T. Sumi, W. Ishida et al., “Notch ligand Delta-like4 inhibits the development of murine experimental allergic conjunctivitis,” Immunology Letters, vol. 121, no. 2, pp. 140–147, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. M. T. Huang, Y. S. Dai, Y. B. Chou, Y. H. Juan, C. C. Wang, and B. L. Chiang, “Regulatory T cells negatively regulate neovasculature of airway remodeling via DLL4-notch signaling,” Journal of Immunology, vol. 183, no. 7, pp. 4745–4754, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Jang, M. Schaller, A. A. Berlin, and N. W. Lukacs, “Notch ligand delta-like 4 regulates development and pathogenesis of allergic airway responses by modulating IL-2 production and Th2 immunity,” Journal of Immunology, vol. 185, no. 10, pp. 5835–5844, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. W. Ishida, K. Fukuda, S. Sakamoto et al., “Regulation of experimental autoimmune uveoretinitis by anti-delta-like ligand 4 monoclonal antibody,” Investigative Ophthalmology & Visual Science, vol. 52, no. 11, pp. 8224–8230, 2011. View at Google Scholar · View at Scopus
  44. K. Mochizuki, F. Xie, S. He et al., “Delta-like ligand 4 identifies a previously uncharacterized population of inflammatory dendritic cells that plays important roles in eliciting allogeneic T cell responses in mice,” Journal of Immunology, vol. 190, no. 7, pp. 3772–3782, 2013. View at Publisher · View at Google Scholar
  45. L. V. Riella, T. Ueno, I. Batal et al., “Blockade of notch ligand delta1 promotes allograft survival by inhibiting alloreactive Th1 cells and cytotoxic T cell generation,” Journal of Immunology, vol. 187, no. 9, pp. 4629–4638, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Okamoto, H. Matsuda, A. Joetham et al., “Jagged1 on dendritic cells and notch on CD4+ T cells initiate lung allergic responsiveness by inducing IL-4 production,” Journal of Immunology, vol. 183, no. 5, pp. 2995–3003, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. L. V. Riella, J. Yang, S. Chock et al., “Jagged2-signaling promotes IL-6-dependent transplant rejection,” European Journal of Immunology, vol. 43, no. 6, pp. 1449–1458, 2013. View at Publisher · View at Google Scholar
  48. J. Nakahara, K. Kanekura, M. Nawa, S. Aiso, and N. Suzuki, “Abnormal expression of TIP30 and arrested nucleocytoplasmic transport within oligodendrocyte precursor cells in multiple sclerosis,” Journal of Clinical Investigation, vol. 119, no. 1, pp. 169–181, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Ban, D. Booth, R. Heard et al., “Linkage disequilibrium screening for multiple sclerosis implicates JAG1 and POU2AF1 as susceptibility genes in Europeans,” Journal of Neuroimmunology, vol. 179, no. 1-2, pp. 108–116, 2006. View at Publisher · View at Google Scholar · View at Scopus