Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2013, Article ID 608951, 9 pages
http://dx.doi.org/10.1155/2013/608951
Review Article

Regulatory T Cells in Allogeneic Stem Cell Transplantation

1Hematology Division & Bone Marrow Transplantation, Chaim Sheba Medical Center, Sackler Medical School, Tel Aviv University, Tel Aviv 52621, Israel
2Hematology Division & Cord Blood Bank, Chaim Sheba Medical Center, Tel Hashomer, Tel Aviv 52621, Israel

Received 26 March 2013; Accepted 15 April 2013

Academic Editor: Nicolaus Kroger

Copyright © 2013 Maria Michael et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Sakaguchi, “Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses,” Annual Review of Immunology, vol. 22, pp. 531–562, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. K. V. Tarbell, L. Petit, X. Zuo et al., “Dendritic cell-expanded, islet-specific CD4+ CD25+ CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice,” Journal of Experimental Medicine, vol. 204, no. 1, pp. 191–201, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. K. J. Wood and S. Sakaguchi, “Regulatory T cells in transplantation tolerance,” Nature Reviews Immunology, vol. 3, no. 3, pp. 199–210, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. P. A. Taylor, R. J. Noelle, and B. R. Blazar, “CD4+CD25+ immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade,” Journal of Experimental Medicine, vol. 193, no. 11, pp. 1311–1318, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Hoffmann, J. Ermann, M. Edinger, C. G. Fathman, and S. Strober, “Donor-type CD4+CD25+ regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation,” Journal of Experimental Medicine, vol. 196, no. 3, pp. 389–399, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. W. Zou, “Regulatory T cells, tumour immunity and immunotherapy,” Nature Reviews Immunology, vol. 6, no. 4, pp. 295–307, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Luptakova, J. Rosenblatt, B. Glotzbecker et al., “Lenalidomide enhances anti-myeloma cellular immunity,” Cancer Immunol Immunother, vol. 62, no. 1, pp. 39–49, 2013. View at Google Scholar
  8. S. Hori, T. Nomura, and S. Sakaguchi, “Control of regulatory T cell development by the transcription factor Foxp3,” Science, vol. 299, no. 5609, pp. 1057–1061, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. W. Liu, A. L. Putnam, Z. Xu-yu et al., “CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells,” Journal of Experimental Medicine, vol. 203, no. 7, pp. 1701–1711, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Seddiki, B. Santner-Nanan, J. Martinson et al., “Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells,” Journal of Experimental Medicine, vol. 203, no. 7, pp. 1693–1700, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Karim, C. I. Kingsley, A. R. Bushell, B. S. Sawitzki, and K. J. Wood, “Alloantigen-induced CD25+CD4+ regulatory T cells can develop in vivo from CD25-CD4+ precursors in a thymus-independent process,” Journal of Immunology, vol. 172, no. 2, pp. 923–928, 2004. View at Google Scholar · View at Scopus
  12. S. P. Cobbold, R. Castejon, E. Adams et al., “Induction of foxP3+ regulatory T cells in the periphery of T cell receptor transgenic mice tolerized to transplants,” Journal of Immunology, vol. 172, no. 10, pp. 6003–6010, 2004. View at Google Scholar · View at Scopus
  13. Y. Peng, Y. Laouar, M. O. Li, E. A. Green, and R. A. Flavell, “TGF-β regulates in vivo expansion of Foxp3-expressing CD4+CD25+ regulatory T cells responsible for protection against diabetes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 13, pp. 4572–4577, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. M. E. Brunkow, E. W. Jeffery, K. A. Hjerrild et al., “Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse,” Nature Genetics, vol. 27, no. 1, pp. 68–73, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. C. L. Bennett, J. Christie, F. Ramsdell et al., “The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3,” Nature Genetics, vol. 27, no. 1, pp. 20–21, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. A. M. Thornton, P. E. Korty, D. Q. Tran et al., “Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells,” Journal of Immunology, vol. 184, no. 7, pp. 3433–3441, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Grzanka, D. Leveson-Gower, K. Golab et al., “FoxP3, Helios, and SATB1: roles and relationships in regulatory T cells,” International Immunopharmacology. Ahead of print.
  18. J. Huehn, J. K. Polansky, and A. Hamann, “Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage?” Nature Reviews Immunology, vol. 9, no. 2, pp. 83–89, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. U. Baron, S. Floess, G. Wieczorek et al., “DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3+ conventional T cells,” The European Journal of Immunology, vol. 37, no. 9, pp. 2378–2389, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Schmidl, M. Klug, T. J. Boeld et al., “Lineage-specific DNA methylation in T cells correlates with histone methylation and enhancer activity,” Genome Research, vol. 19, no. 7, pp. 1165–1174, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Zheng, S. Josefowicz, A. Chaudhry, X. P. Peng, K. Forbush, and A. Y. Rudensky, “Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate,” Nature, vol. 463, no. 7282, pp. 808–812, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. H. P. Kim and W. J. Leonard, “CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation,” Journal of Experimental Medicine, vol. 204, no. 7, pp. 1543–1551, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Lal and J. S. Bromberg, “Epigenetic mechanisms of regulation of Foxp3 expression,” Blood, vol. 114, no. 18, pp. 3727–3735, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. J. K. Polansky, L. Schreiber, C. Thelemann et al., “Methylation matters: binding of Ets-1 to the demethylated Foxp3 gene contributes to the stabilization of Foxp3 expression in regulatory T cells,” Journal of Molecular Medicine, vol. 88, no. 10, pp. 1029–1040, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. D. Muller, J. D. Seebach, L. H. Bühler, M. Pascual, and D. Golshayan, “Transplantation tolerance: clinical potential of regulatory T cells,” Self/Nonself-Immune Recognition and Signaling, vol. 2, no. 1, pp. 26–34, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. D. A. A. Vignali, L. W. Collison, and C. J. Workman, “How regulatory T cells work,” Nature Reviews Immunology, vol. 8, no. 7, pp. 523–532, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. J. D. Fontenot, J. P. Rasmussen, M. A. Gavin, and A. Y. Rudensky, “A function for interleukin 2 in Foxp3-expressing regulatory T cells,” Nature Immunology, vol. 6, no. 11, pp. 1142–1151, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. L. M. D'Cruz and L. Klein, “Development and function of agonist-induced CD25+Foxp3+ regulatory T cells in the absence of interleukin 2 signaling,” Nature Immunology, vol. 6, no. 11, pp. 1152–1159, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. J. L. Cohen, A. Trenado, D. Vasey, D. Klatzmann, and B. L. Salomon, “CD4+CD25+ immunoregulatory T cells: new therapeutics for graft-versus-host disease,” Journal of Experimental Medicine, vol. 196, no. 3, pp. 401–406, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Edinger, P. Hoffmann, J. Ermann et al., “CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation,” Nature Medicine, vol. 9, no. 9, pp. 1144–1150, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. V. H. Nguyen, S. Shashidhar, D. S. Chang et al., “The impact of regulatory T cells on T-cell immunity following hematopoietic cell transplantation,” Blood, vol. 111, no. 2, pp. 945–953, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. C. I. Kingsley, M. Karim, A. R. Bushell, and K. J. Wood, “CD25+CD4+ regulatory T cells prevent graft rejection: CTLA-4- and IL-10-dependent immunoregulation of alloresponses,” Journal of Immunology, vol. 168, no. 3, pp. 1080–1086, 2002. View at Google Scholar · View at Scopus
  33. S. Gregori, M. Casorati, S. Amuchastegui, S. Smiroldo, A. M. Davalli, and L. Adorini, “Regulatory T cells induced by 1α,25-dihydroxyvitamin D3 and mycophenolate mofetil treatment mediate transplantation tolerance,” Journal of Immunology, vol. 167, no. 4, pp. 1945–1953, 2001. View at Google Scholar · View at Scopus
  34. M. Hara, C. I. Kingsley, M. Niimi et al., “IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo,” Journal of Immunology, vol. 166, no. 6, pp. 3789–3796, 2001. View at Google Scholar · View at Scopus
  35. O. Joffre, N. Gorsse, P. Romagnoli, D. Hudrisier, and J. P. M. van Meerwijk, “Induction of antigen-specific tolerance to bone marrow allografts with CD4+CD25+ T lymphocytes,” Blood, vol. 103, no. 11, pp. 4216–4221, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. A. M. Hanash and R. B. Levy, “Donor CD4+CD25+ T cells promote engraftment and tolerance following MHC-mismatched hematopoietic cell transplantation,” Blood, vol. 105, no. 4, pp. 1828–1836, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. M. J. Turk, J. A. Guevara-Patiño, G. A. Rizzuto, M. E. Engelhorn, and A. N. Houghton, “Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells,” Journal of Experimental Medicine, vol. 200, no. 6, pp. 771–782, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Onizuka, I. Tawara, J. Shimizu, S. Sakaguchi, T. Fujita, and E. Nakayama, “Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor α) monoclonal antibody,” Cancer Research, vol. 59, no. 13, pp. 3128–3133, 1999. View at Google Scholar · View at Scopus
  39. F. Ghiringhelli, N. Larmonier, E. Schmitt et al., “CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative,” European Journal of Immunology, vol. 34, no. 2, pp. 336–344, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Shimizu, S. Yamazaki, and S. Sakaguchi, “Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity,” Journal of Immunology, vol. 163, no. 10, pp. 5211–5218, 1999. View at Google Scholar · View at Scopus
  41. U. K. Liyanage, T. T. Moore, H. G. Joo et al., “Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma,” Journal of Immunology, vol. 169, no. 5, pp. 2756–2761, 2002. View at Google Scholar · View at Scopus
  42. F. Ichihara, K. Kono, A. Takahashi, H. Kawaida, H. Sugai, and H. Fujii, “Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers,” Clinical Cancer Research, vol. 9, no. 12, pp. 4404–4408, 2003. View at Google Scholar · View at Scopus
  43. T. J. Curiel, G. Coukos, L. Zou et al., “Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival,” Nature Medicine, vol. 10, no. 9, pp. 942–949, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. C. P. Gray, P. Arosio, and P. Hersey, “Association of increased levels of heavy-chain ferritin with increased CD4+ CD25+ regulatory T-cell levels in patients with melanoma,” Clinical Cancer Research, vol. 9, no. 7, pp. 2551–2559, 2003. View at Google Scholar · View at Scopus
  45. A. M. Wolf, D. Wolf, M. Steurer, G. Gastl, E. Gunsilius, and B. Grubeck-Loebenstein, “Increase of regulatory T cells in the peripheral blood of cancer patients,” Clinical Cancer Research, vol. 9, no. 2, pp. 606–612, 2003. View at Google Scholar · View at Scopus
  46. K. Giannopoulos, M. Schmitt, M. Kowal et al., “Characterization of regulatory T cells in patients with B-cell chronic lymphocytic leukemia,” Oncology Reports, vol. 20, no. 3, pp. 677–682, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Jak, R. Mous, E. B. M. Remmerswaal et al., “Enhanced formation and survival of CD4+CD25hi Foxp3+ T-cells in chronic lymphocytic leukemia,” Leukemia and Lymphoma, vol. 50, no. 5, pp. 788–801, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. G. D'Arena, V. Simeon, F. D'Auria et al., “Regulatory T-cells in chronic lymphocytic leukemia: actor or innocent bystander?” The American Journal of Blood Research, vol. 3, no. 1, pp. 52–57, 2013. View at Google Scholar
  49. M. Beyer, M. Kochanek, T. Giese et al., “In vivo peripheral expansion of naive CD4+CD25high FoxP3+ regulatory T cells in patients with multiple myeloma,” Blood, vol. 107, no. 10, pp. 3940–3949, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. K. Giannopoulos, W. Kaminska, I. Hus, and A. Dmoszynska, “The frequency of T regulatory cells modulates the survival of multiple myeloma patients: detailed characterisation of immune status in multiple myeloma,” The British Journal of Cancer, vol. 106, no. 3, pp. 546–552, 2012. View at Google Scholar
  51. N. A. Marshall, L. E. Christie, L. R. Munro et al., “Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma,” Blood, vol. 103, no. 5, pp. 1755–1762, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Álvaro, M. Lejeune, M. T. Salvadó et al., “Outcome in Hodgkin's lymphoma can be predicted from the presence of accompanying cytotoxic and regulatory T cells,” Clinical Cancer Research, vol. 11, no. 4, pp. 1467–1473, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Wang and X. Y. Ke, “The four types of Tregs in malignant lymphomas,” Journal of Hematology and Oncology, vol. 4, article 50, 2011. View at Google Scholar
  54. G. D'Arena, L. Laurenti, M. M. Minervini et al., “Regulatory T-cell number is increased in chronic lymphocytic leukemia patients and correlates with progressive disease,” Leukemia Research, vol. 35, no. 3, pp. 363–368, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. L. Weiss, T. Melchardt, A. Egle, C. Grabmer, R. Greil, and I. Tinhofer, “Regulatory T cells predict the time to initial treatment in early stage chronic lymphocytic leukemia,” Cancer, vol. 117, no. 10, pp. 2163–2169, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. G. D'Arena, F. D'Auria, V. Simeon et al. et al., “A shorter time to the first treatment may be predicted by the absolute number of regulatory T-cells in patients with Rai stage 0 chronic lymphocytic leukemia,” The American Journal of Hematology, vol. 87, no. 6, pp. 628–631, 2012. View at Google Scholar
  57. M. Beyer, M. Kochanek, K. Darabi et al., “Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine,” Blood, vol. 106, no. 6, pp. 2018–2025, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. B. N. Lee, H. Gao, E. N. Cohen et al., “Treatment with lenalidomide modulates T-cell immunophenotype and cytokine production in patients with chronic lymphocytic leukemia,” Cancer, vol. 117, no. 17, pp. 3999–4008, 2011. View at Google Scholar
  59. C. Galustian, B. Meyer, M. C. Labarthe et al., “The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells,” Cancer Immunology, Immunotherapy, vol. 58, no. 7, pp. 1033–1045, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. T. W. Kelley, B. Pohlman, P. Elson, and E. D. Hsi, “The ratio of FOXP3+ regulatory T cells to granzyme B+ cytotoxic T/NK cells predicts prognosis in classical Hodgkin lymphoma and is independent of bcl-2 and MAL expression,” The American Journal of Clinical Pathology, vol. 128, no. 6, pp. 958–965, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. M. E. Morgan, J. H. M. van Bilsen, A. M. Bakker et al., “Expression of FOXP3 mRNA is not confined to CD4+CD25+ T regulatory cells in humans,” Human Immunology, vol. 66, no. 1, pp. 13–20, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. G. Zhou, C. G. Drake, and H. I. Levitsky, “Amplification of tumor-specific regulatory T cells following therapeutic cancer vaccines,” Blood, vol. 107, no. 2, pp. 628–636, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. J. Dannull, Z. Su, D. Rizzieri et al., “Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells,” Journal of Clinical Investigation, vol. 115, no. 12, pp. 3623–3633, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. H. Pere, Y. Montier, J. Bayry et al. et al., “A CCR4 antagonist combined with vaccines induces antigen-specific CD8+T cells and tumor immunity against self antigens,” Blood, vol. 118, no. 118, pp. 4853–4862, 2011. View at Google Scholar
  65. J. Rosenblatt, B. Vasir, L. Uhl et al., “Vaccination with dendritic cell/tumor fusion cells results in cellular and humoral antitumor immune responses in patients with multiple myeloma,” Blood, vol. 117, no. 2, pp. 393–402, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. C. G. Brunstein, J. S. Miller, Q. Cao et al., “Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics,” Blood, vol. 117, no. 3, pp. 1061–1070, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Edinger and P. Hoffmann, “Regulatory T cells in stem cell transplantation: strategies and first clinical experiences,” Current Opinion in Immunology, vol. 23, no. 5, pp. 679–684, 2011. View at Google Scholar
  68. M. di Ianni, F. Falzetti, A. Carotti et al., “Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation,” Blood, vol. 117, no. 14, pp. 3921–3928, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. P. Trzonkowski, M. Bieniaszewska, J. Juścińska et al., “First-in-man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+CD25+CD127- T regulatory cells,” Clinical Immunology, vol. 133, no. 1, pp. 22–26, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. L. Strauss, T. L. Whiteside, A. Knights, C. Bergmann, A. Knuth, and A. Zippelius, “Selective survival of naturally occurring human CD4+CD25 +Foxp3+ regulatory T cells cultured with rapamycin,” Journal of Immunology, vol. 178, no. 1, pp. 320–329, 2007. View at Google Scholar · View at Scopus
  71. C. Baecher-Allan, J. A. Brown, G. J. Freeman, and D. A. Hafler, “CD4+CD25high regulatory cells in human peripheral blood,” Journal of Immunology, vol. 167, no. 3, pp. 1245–1253, 2001. View at Google Scholar · View at Scopus
  72. K. L. Hippen, S. C. Merkel, D. K. Schirm et al., “Generation and large-scale expansion of human inducible regulatory T cells that suppress graft-versus-host disease,” The American Journal of Transplantation, vol. 11, no. 6, pp. 1148–1157, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. K. L. Hippen, S. C. Merkel, D. K. Schirm et al., “Massive ex vivo expansion of human natural regulatory T cells (T regs) with minimal loss of in vivo functional activity,” Science Translational Medicine, vol. 3, no. 83, Article ID 83ra41, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. P. Hoffmann, R. Eder, L. A. Kunz-Schughart, R. Andreesen, and M. Edinger, “Large-scale in vitro expansion of polyclonal human CD4+CD25high regulatory T cells,” Blood, vol. 104, no. 3, pp. 895–903, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. S. N. Ukena, S. Velaga, L. Goudeva et al., “Human regulatory T cells of G-CSF mobilized allogeneic stem cell donors qualify for clinical application,” PLoS One, vol. 7, no. 12, article e51644, 2012. View at Google Scholar
  76. L. Zou, B. Barnett, H. Safah et al., “Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals,” Cancer Research, vol. 64, no. 22, pp. 8451–8455, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. A. M. Wolf, K. Eller, R. Zeiser et al., “The sphingosine 1-phosphate receptor agonist FTY720 potently inhibits regulatory T cell proliferation in vitro and in vivo,” Journal of Immunology, vol. 183, no. 6, pp. 3751–3760, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. A. B. Pillai, T. I. George, S. Dutt, and S. Strober, “Host natural killer T cells induce an interleukin-4-dependent expansion of donor CD4+CD25+Foxp3+ T regulatory cells that protects against graft-versus-host disease,” Blood, vol. 113, no. 18, pp. 4458–4467, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. H. E. Kohrt, A. B. Pillai, R. Lowsky, and S. Strober, “NKT cells, Treg, and their interactions in bone marrow transplantation,” The European Journal of Immunology, vol. 40, no. 7, pp. 1862–1869, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. M. Battaglia, A. Stabilini, and M. G. Roncarolo, “Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells,” Blood, vol. 105, no. 12, pp. 4743–4748, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. R. Zeiser, V. H. Nguyen, A. Beilhack et al., “Inhibition of CD4+CD25+ regulatory T-cell function by calcineurin-dependent interleukin-2 production,” Blood, vol. 108, no. 1, pp. 390–399, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. J. J. A. Coenen, H. J. P. M. Koenen, E. van Rijssen et al., “Rapamycin, not cyclosporine, permits thymic generation and peripheral preservation of CD4+CD25+FoxP3+ T cells,” Bone Marrow Transplantation, vol. 39, no. 9, pp. 537–545, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. J. M. Palmer, B. J. Chen, D. Deoliveira, N. D. Le, and N. J. Chao, “Novel mechanism of rapamycin in GVHD: increase in interstitial regulatory T cells,” Bone Marrow Transplantation, vol. 45, no. 2, pp. 379–384, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. E. Zorn, M. Mohseni, H. Kim et al., “Combined CD4+ donor lymphocyte infusion and low-dose recombinant IL-2 expand FOXP3+ regulatory T cells following allogeneic hematopoietic stem cell transplantation,” Biology of Blood and Marrow Transplantation, vol. 15, no. 3, pp. 382–388, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. J. Koreth, K. Matsuoka, H. T. Kim et al. et al., “Interleukin-2 and regulatory T cells in graft-versus-host disease,” The New England Journal of Medicine, pp. 2055–2066, 2011. View at Google Scholar
  86. H. J. Shin, J. Baker, D. B. Leveson-Gower, A. T. Smith, E. I. Sega, and R. S. Negrin, “Rapamycin and IL-2 reduce lethal acute graft-versus-host disease associated with increased expansion of donor type CD4+CD25+Foxp3+ regulatory T cells,” Blood, vol. 118, no. 8, pp. 2342–2350, 2011. View at Google Scholar
  87. M. Lopez, M. R. Clarkson, M. Albin, M. H. Sayegh, and N. Najafian, “A novel mechanism of action for anti-thymocyte globulin: induction of CD4+CD25+Foxp3+ regulatory T cells,” Journal of the American Society of Nephrology, vol. 17, no. 10, pp. 2844–2853, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. X. Feng, S. Kajigaya, E. E. Solomou et al., “Rabbit ATG but not horse ATG promotes expansion of functional CD4 +CD25highFOXP3+ regulatory T cells in vitro,” Blood, vol. 111, no. 7, pp. 3675–3683, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. M. C. Ruzek, J. S. Waire, D. Hopkins et al., “Characterization of in vitro antimurine thymocyte globulin-induced regulatory T cells that inhibit graft-versus-host disease in vivo,” Blood, vol. 111, no. 3, pp. 1726–1734, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. O. Shimony, A. Nagler, Y. N. Gellman et al., “Anti-T lymphocyte globulin (ATG) induces generation of regulatory T cells, at least part of them express activated CD44,” The Journal of Clinical Immunology, vol. 32, no. 1, pp. 173–188, 2012. View at Google Scholar
  91. N. Komatsu, M. E. Mariotti-Ferrandiz, Y. Wang, B. Malissen, H. Waldmann, and S. Hori, “Heterogeneity of natural Foxp3+ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 6, pp. 1903–1908, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. J. L. Riley, C. H. June, and B. R. Blazar, “Human T regulatory cell therapy: take a billion or so and call me in the morning,” Immunity, vol. 30, no. 5, pp. 656–665, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. J. Choi, J. Ritchey, J. L. Prior et al., “In vivo administration of hypomethylating agents mitigate graft-versus-host disease without sacrificing graft-versus-leukemia,” Blood, vol. 116, no. 1, pp. 129–139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. I. Idler, K. Giannopoulos, T. Zenz et al., “Lenalidomide treatment of chronic lymphocytic leukaemia patients reduces regulatory T cells and induces Th17 T helper cells,” British Journal of Haematology, vol. 148, no. 6, pp. 948–950, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. M. C. Minnema, M. S. van der Veer, T. Aarts, M. Emmelot, T. Mutis, and H. M. Lokhorst, “Lenalidomide alone or in combination with dexamethasone is highly effective in patients with relapsed multiple myeloma following allogeneic stem cell transplantation and increases the frequency of CD4+Foxp3+ T cells,” Leukemia, vol. 23, no. 3, pp. 605–607, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. E. Kneppers, B. van der Holt, M. J. Kersten et al., “Lenalidomide maintenance after nonmyeloablative allogeneic stem cell transplantation in multiple myeloma is not feasible: results of the HOVON 76 Trial,” Blood, vol. 118, no. 9, pp. 2413–2419, 2011. View at Google Scholar
  97. K. R. M. Raja, L. Kovarova, and R. Hajek, “Induction by lenalidomide and dexamethasone combination increases regulatory cells of patients with previously untreated multiple myeloma,” Leukemia and Lymphoma, vol. 53, no. 7, pp. 1406–1408, 2012. View at Google Scholar
  98. C. S. Kasyapa, T. Sher, and A. A. Chanan-Khan, “Multiple myeloma and immunomodulation: regulating the regulatory cells,” Leukemia and Lymphoma, vol. 53, no. 7, pp. 1253–1254, 2012. View at Google Scholar