Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2013, Article ID 720504, 16 pages
http://dx.doi.org/10.1155/2013/720504
Review Article

The Interplay between the Bone and the Immune System

1Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy
2Department of Medical Sciences, University of Torino, 10126 Torino, Italy
3Department of Orthopedics, Washington University School of Medicine, St. Louis, MO 63110, USA
4Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Piazza Giulio Cesare, 11, 70124 Bari, Italy

Received 1 March 2013; Accepted 7 June 2013

Academic Editor: Enrico Maggi

Copyright © 2013 Giorgio Mori et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. J. Knowles and N. A. Athanasou, “Canonical and non-canonical pathways of osteoclast formation,” Histology and Histopathology, vol. 24, no. 3, pp. 337–346, 2009. View at Google Scholar · View at Scopus
  2. F. Long, “Building strong bones: molecular regulation of the osteoblast lineage,” Nature Reviews Molecular Cell Biology, vol. 13, no. 1, pp. 27–38, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. M. C. Walsh, N. Kim, Y. Kadono et al., “Osteoimmunology: interplay between the immune system and bone metabolism,” Annual Review of Immunology, vol. 24, pp. 33–63, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Sato and H. Takayanagi, “Osteoclasts, rheumatoid arthritis, and osteoimmunology,” Current Opinion in Rheumatology, vol. 18, no. 4, pp. 419–426, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. P. D'Amelio and G. C. Isaia, “Immune system and postmenopausal bone loss,” Clinical Reviews in Bone and Mineral Metabolism, vol. 7, no. 4, pp. 262–268, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Yoshida, S.-I. Hayashi, T. Kunisada et al., “The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene,” Nature, vol. 345, no. 6274, pp. 442–443, 1990. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Faccio, S. Takeshita, A. Zallone, F. P. Ross, and S. L. Teitelbaum, “c-Fms and the αvβ3 integrin collaborate during osteoclast differentiation,” Journal of Clinical Investigation, vol. 111, no. 5, pp. 749–758, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. L. C. Hofbauer and A. E. Heufelder, “Role of receptor activator of nuclear factor-κB ligand and osteoprotegerin in bone cell biology,” Journal of Molecular Medicine, vol. 79, no. 5-6, pp. 243–253, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. P. D'Amelio, G. Isaia, and G. C. Isaia, “The osteoprotegerin/RANK/RANKL system: a bone key to vascular disease,” Journal of Endocrinological Investigation, vol. 32, no. 4, pp. 6–9, 2009. View at Google Scholar · View at Scopus
  10. J. Xu, H. F. Wu, E. S. M. Ang et al., “NF-κB modulators in osteolytic bone diseases,” Cytokine and Growth Factor Reviews, vol. 20, no. 1, pp. 7–17, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Grundt, I. A. Grafe, U. Liegibel, U. Sommer, P. Nawroth, and C. Kasperk, “Direct effects of osteoprotegerin on human bone cell metabolism,” Biochemical and Biophysical Research Communications, vol. 389, no. 3, pp. 550–555, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. P. D'Amelio, A. Grimaldi, S. Di Bella et al., “Estrogen deficiency increases osteoclastogenesis up-regulating T cells activity: a key mechanism in osteoporosis,” Bone, vol. 43, no. 1, pp. 92–100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Leibbrandt and J. M. Penninger, “RANK/RANKL: regulators of immune responses and bone physiology,” Annals of the New York Academy of Sciences, vol. 1143, pp. 123–150, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Fili, M. Karalaki, and B. Schaller, “Mechanism of bone metastasis: the role of osteoprotegerin and of the host-tissue microenvironment-related survival factors,” Cancer Letters, vol. 283, no. 1, pp. 10–19, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Charatcharoenwitthaya, S. Khosla, E. J. Atkinson, L. K. McCready, and B. L. Riggs, “Effect of blockade of TNF-α and interleukin-1 action on bone resorption in early postmenopausal women,” Journal of Bone and Mineral Research, vol. 22, no. 5, pp. 724–729, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. I. Roato, G. Brunetti, E. Gorassini et al., “IL-7 up-regulates TNF-α-dependent osteoclastogenesis in patients affected by solid tumor,” PLoS ONE, vol. 1, no. 1, article e124, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. P. D'Amelio, A. Grimaldi, P. Bernabei, G. P. Pescarmona, and G. Isaia, “Immune system and bone metabolism: does thymectomy influence postmenopausal bone loss in humans?” Bone, vol. 39, no. 3, pp. 658–665, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. Yao, S. L. Painter, W. C. Fanslow et al., “Human IL-17: a novel cytokine derived from T cells,” Journal of Immunology, vol. 155, no. 12, pp. 5483–5486, 1995. View at Google Scholar · View at Scopus
  19. E. Lubberts, M. Koenders, and W. B. van den Berg, “The role of T cell interleukin-17 in conducting destructive arthritis: lessons from animal models,” Arthritis Research and Therapy, vol. 7, no. 1, pp. 29–37, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Yago, Y. Nanke, M. Kawamoto et al., “IL-23 induces human osteoclastogenesis via IL-17 in vitro, and anti-IL-23 antibody attenuates collagen-induced arthritis in rats,” Arthritis Research and Therapy, vol. 9, no. 5, article R96, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. J. M. W. Quinn, N. A. Sims, H. Saleh et al., “IL-23 inhibits osteoclastogenesis indirectly through lymphocytes and is required for the maintenance of bone mass in mice,” Journal of Immunology, vol. 181, no. 8, pp. 5720–5729, 2008. View at Google Scholar · View at Scopus
  22. G. D. Kalliolias, B. Zhao, A. Triantafyllopoulou, K.-H. Park-Min, and L. B. Ivashkiv, “Interleukin-27 inhibits human osteoclastogenesis by abrogating RANKL-mediated induction of nuclear factor of activated T cells c1 and suppressing proximal RANK signaling,” Arthritis and Rheumatism, vol. 62, no. 2, pp. 402–413, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Furukawa, H. Takaishi, J. Takito et al., “IL-27 abrogates receptor activator of NF-κB ligand-mediated osteoclastogenesis of human granulocyte-macrophage colony-forming unit cells through STAT1-dependent inhibition of c-Fos,” Journal of Immunology, vol. 183, no. 4, pp. 2397–2406, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Kamiya, M. Okumura, Y. Chiba et al., “IL-27 suppresses RANKL expression in CD4+ T cells in part through STAT3,” Immunology Letters, vol. 138, no. 1, pp. 47–53, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Diveu, M. J. McGeachy, K. Boniface et al., “IL-27 blocks RORc expression to inhibit lineage commitment of Th17 cells,” Journal of Immunology, vol. 182, no. 9, pp. 5748–5756, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Neufert, C. Becker, S. Wirtz et al., “IL-27 controls the development of inducible regulatory T cells and Th17 cells via differential effects on STAT1,” European Journal of Immunology, vol. 37, no. 7, pp. 1809–1816, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. G. D. Roodman, “Perspectives: interleukin-6: an osteotropic factor?” Journal of Bone and Mineral Research, vol. 7, no. 5, pp. 475–478, 1992. View at Google Scholar · View at Scopus
  28. H. Takayanagi, K. Ogasawara, S. Hida et al., “T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ,” Nature, vol. 408, no. 6812, pp. 600–605, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Sato, T. Satoh, K. Shizume et al., “Prolonged decrease of serum calcium concentration by murine γ-interferon in hypercalcemic, human tumor (EC-GI)-bearing nude mice,” Cancer Research, vol. 52, no. 2, pp. 444–449, 1992. View at Google Scholar · View at Scopus
  30. J. Massague, “The transforming growth factor-β family,” Annual Review of Cell Biology, vol. 6, pp. 597–641, 1990. View at Google Scholar · View at Scopus
  31. P. Juárez and T. A. Guise, “TGF-β in cancer and bone: implications for treatment of bone metastases,” Bone, vol. 48, no. 1, pp. 23–29, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Gronthos, M. Mankani, J. Brahim, P. G. Robey, and S. Shi, “Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 25, pp. 13625–13630, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Mori, A. Ballini, C. Carbone et al., “Osteogenic differentiation of dental follicle stem cells,” International Journal of Medical Science, vol. 9, no. 6, pp. 480–487, 2012. View at Google Scholar
  34. G. Mori, G. Brunetti, A. Oranger et al., “Dental pulp stem cells: osteogenic differentiation and gene expression,” Annals of the New York Academy of Sciences, vol. 1237, no. 1, pp. 47–52, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. E. Giorgini, C. Conti, P. Ferraris et al., “FT-IR microscopic analysis on human dental pulp stem cells,” Vibrational Spectroscopy, vol. 57, no. 1, pp. 30–34, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Mori, M. Centonze, G. Brunetti et al., “Osteogenic properties of human dental pulp stem cells,” Journal of Biological Regulators and Homeostatic Agents, vol. 24, no. 2, pp. 167–175, 2010. View at Google Scholar · View at Scopus
  37. D. C. Morris, K. Masuhara, K. Takaoka, K. Ono, and H. C. Anderson, “Immunolocalization of alkaline phosphatase in osteoblasts and matrix vesicles of human fetal bone,” Bone and Mineral, vol. 19, no. 3, pp. 287–298, 1992. View at Publisher · View at Google Scholar · View at Scopus
  38. E. J. Mackie, “Osteoblasts: novel roles in orchestration of skeletal architecture,” International Journal of Biochemistry and Cell Biology, vol. 35, no. 9, pp. 1301–1305, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. H. C. Anderson, “The role of matrix vesicles in physiological and pathological calcification,” Current Opinion in Orthopaedics, vol. 18, no. 5, pp. 428–433, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Yoshiko, G. A. Candeliere, N. Maeda, and J. E. Aubin, “Osteoblast autonomous Pi regulation via Pit1 plays a role in bone mineralization,” Molecular and Cellular Biology, vol. 27, no. 12, pp. 4465–4474, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Roberts, S. Narisawa, D. Harmey, J. L. Millán, and C. Farquharson, “Functional involvement of PHOSPHO1 in matrix vesicle-mediated skeletal mineralization,” Journal of Bone and Mineral Research, vol. 22, no. 4, pp. 617–627, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. L. Hessle, K. A. Johnson, H. C. Anderson et al., “Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 14, pp. 9445–9449, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. G. A. Rodan and T. J. Martin, “Role of osteoblasts in hormonal control of bone resorption—a hypothesis,” Calcified Tissue International, vol. 33, no. 4, pp. 349–351, 1981. View at Google Scholar · View at Scopus
  44. C. M. Silve, G. T. Hradek, A. L. Jones, and C. D. Arnaud, “Parathyroid hormone receptor in intact embryonic chicken bone: characterization and cellular localization,” Journal of Cell Biology, vol. 94, no. 2, pp. 379–386, 1982. View at Google Scholar · View at Scopus
  45. H. Yasuda, N. Shima, N. Nakagawa et al., “Osteoclast differentiation factor is a ligand for osteoprotegerin/ osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 7, pp. 3597–3602, 1998. View at Publisher · View at Google Scholar · View at Scopus
  46. R. Tamma, G. Colaianni, C. Camerino et al., “Microgravity during spaceflight directly affects in vitro osteoclastogenesis and bone resorption,” FASEB Journal, vol. 23, no. 8, pp. 2549–2554, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. J. W. M. Chow, A. J. Wilson, T. J. Chambers, and S. W. Fox, “Mechanical loading stimulates bone formation by reactivation of bone lining cells in 13-week-old rats,” Journal of Bone and Mineral Research, vol. 13, no. 11, pp. 1760–1767, 1998. View at Publisher · View at Google Scholar · View at Scopus
  48. M. R. Forwood, I. Owan, Y. Takano, and C. H. Turner, “Increased bone formation in rat tibiae after a single short period of dynamic loading in vivo,” American Journal of Physiology, vol. 270, no. 3, pp. E419–E423, 1996. View at Google Scholar · View at Scopus
  49. B. S. Noble and J. Reeve, “Osteocyte function, osteocyte death and bone fracture resistance,” Molecular and Cellular Endocrinology, vol. 159, no. 1-2, pp. 7–13, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. F. M. Pavalko, R. L. Gerard, S. M. Ponik, P. J. Gallagher, Y. Jin, and S. M. Norvell, “Fluid shear stress inhibits TNF-α-induced apoptosis in osteoblasts: a role for fluid shear stress-induced activation of PI3-kinase and inhibition of caspase-3,” Journal of Cellular Physiology, vol. 194, no. 2, pp. 194–205, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Komori, H. Yagi, S. Nomura et al., “Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts,” Cell, vol. 89, no. 5, pp. 755–764, 1997. View at Google Scholar · View at Scopus
  52. P. Ducy, R. Zhang, V. Geoffroy, A. L. Ridall, and G. Karsenty, “Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation,” Cell, vol. 89, no. 5, pp. 747–754, 1997. View at Google Scholar · View at Scopus
  53. J. B. Lian, A. Javed, S. K. Zaidi et al., “Regulatory controls for osteoblast growth and differentiation: role of Runx/Cbfa/AML factors,” Critical Reviews in Eukaryotic Gene Expression, vol. 14, no. 1-2, pp. 1–41, 2004. View at Google Scholar · View at Scopus
  54. P. Ducy, M. Starbuck, M. Priemel et al., “A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development,” Genes and Development, vol. 13, no. 14, pp. 1025–1036, 1999. View at Google Scholar · View at Scopus
  55. K. Nakashima, X. Zhou, G. Kunkel et al., “The novel zinc finger-containing transcription factor Osterix is required for osteoblast differentiation and bone formation,” Cell, vol. 108, no. 1, pp. 17–29, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. X. Yang, K. Matsuda, P. Bialek et al., “ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology: implication for Coffin-Lowry syndrome,” Cell, vol. 117, no. 3, pp. 387–398, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Kassem, M. Kveiborg, and E. F. Eriksen, “Production and action of transforming growth factor-β in human osteoblast cultures: dependence on cell differentiation and modulation by calcitriol,” European Journal of Clinical Investigation, vol. 30, no. 5, pp. 429–437, 2000. View at Publisher · View at Google Scholar · View at Scopus
  58. R. L. Jilka, R. S. Weinstein, T. Bellido, A. M. Parfitt, and S. C. Manolagas, “Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokines,” Journal of Bone and Mineral Research, vol. 13, no. 5, pp. 793–802, 1998. View at Publisher · View at Google Scholar · View at Scopus
  59. P. A. Lucas, “Chemotactic response of osteoblast-like cells to transforming growth factor beta,” Bone, vol. 10, no. 6, pp. 459–463, 1989. View at Publisher · View at Google Scholar · View at Scopus
  60. T. Alliston, L. Choy, P. Ducy, G. Karsenty, and R. Derynck, “TGF-β-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation,” EMBO Journal, vol. 20, no. 9, pp. 2254–2272, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Maeda, M. Hayashi, S. Komiya, T. Imamura, and K. Miyazono, “Endogenous TGF-β signaling suppresses maturation of osteoblastic mesenchymal cells,” EMBO Journal, vol. 23, no. 3, pp. 552–563, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Centrella, S. Casinghino, J. Kim et al., “Independent changes in type I and type II receptors for transforming growth factor β induced by bone morphogenetic protein 2 parallel expression of the osteoblast phenotype,” Molecular and Cellular Biology, vol. 15, no. 6, pp. 3273–3281, 1995. View at Google Scholar · View at Scopus
  63. E. Canalis, A. N. Economides, and E. Gazzerro, “Bone morphogenetic proteins, their antagonists, and the skeleton,” Endocrine Reviews, vol. 24, no. 2, pp. 218–235, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Spinella-Jaegle, S. Roman-Roman, C. Faucheu et al., “Opposite effects of bone morphogenetic protein-2 and transforming growth factor-β1 on osteoblast differentiation,” Bone, vol. 29, no. 4, pp. 323–330, 2001. View at Publisher · View at Google Scholar · View at Scopus
  65. V. Krishnan, H. U. Bryant, and O. A. MacDougald, “Regulation of bone mass by Wnt signaling,” Journal of Clinical Investigation, vol. 116, no. 5, pp. 1202–1209, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. R. Baron and M. Kneissel, “WNT signaling in bone homeostasis and disease: from human mutations to treatments,” Nature Medicine, vol. 19, no. 2, pp. 179–192, 2013. View at Google Scholar
  67. R. Baron and G. Rawadi, “Wnt signaling and the regulation of bone mass,” Current Osteoporosis Reports, vol. 5, no. 2, pp. 73–80, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. J. J. Pinzone, B. M. Hall, N. K. Thudi et al., “The role of Dickkopf-1 in bone development, homeostasis, and disease,” Blood, vol. 113, no. 3, pp. 517–525, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. L. M. Boyden, J. Mao, J. Belsky et al., “High bone density due to a mutation in LDL-receptor-related protein 5,” The New England Journal of Medicine, vol. 346, no. 20, pp. 1513–1521, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. Y. Gong, R. B. Slee, N. Fukai et al., “LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development,” Cell, vol. 107, no. 4, pp. 513–523, 2001. View at Google Scholar
  71. M. Ai, S. L. Holmen, W. Van Hul, B. O. Williams, and M. L. Warman, “Reduced affinity to and inhibition by DKK1 form a common mechanism by which high bone mass-associated missense mutations in LRP5 affect canonical Wnt signaling,” Molecular and Cellular Biology, vol. 25, no. 12, pp. 4946–4955, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. D. L. Ellies, B. Viviano, J. McCarthy et al., “Bone density ligand, sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity,” Journal of Bone and Mineral Research, vol. 21, no. 11, pp. 1738–1749, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. W. Balemans, M. Ebeling, N. Patel et al., “Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST),” Human Molecular Genetics, vol. 10, no. 5, pp. 537–543, 2001. View at Google Scholar · View at Scopus
  74. W. Balemans, N. Patel, M. Ebeling et al., “Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease,” Journal of Medical Genetics, vol. 39, no. 2, pp. 91–97, 2002. View at Google Scholar · View at Scopus
  75. X. Tu, K. S. Joeng, K. I. Nakayama et al., “Noncanonical Wnt signaling through G protein-linked PKCδ activation promotes bone formation,” Developmental Cell, vol. 12, no. 1, pp. 113–127, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. I. Takada, M. Mihara, M. Suzawa et al., “A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-γ transactivation,” Nature Cell Biology, vol. 9, no. 11, pp. 1273–1285, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Kneissel, “The promise of sclerostin inhibition for the treatment of osteoporosis,” IBMS BoneKey, vol. 6, pp. 259–264, 2009. View at Google Scholar
  78. A. Montero, Y. Okada, M. Tomita et al., “Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation,” Journal of Clinical Investigation, vol. 105, no. 8, pp. 1085–1093, 2000. View at Google Scholar · View at Scopus
  79. Z. Liu, K. J. Lavine, I. H. Hung, and D. M. Ornitz, “FGF18 is required for early chondrocyte proliferation, hypertrophy and vascular invasion of the growth plate,” Developmental Biology, vol. 302, no. 1, pp. 80–91, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. G. Pan, J. Ni, Y.-F. Wei, G.-I. Yu, R. Gentz, and V. M. Dixit, “An antagonist decoy receptor and a death domain-containing receptor for TRAIL,” Science, vol. 277, no. 5327, pp. 815–818, 1997. View at Publisher · View at Google Scholar · View at Scopus
  81. J. P. Sheridan, S. A. Marsters, R. M. Pitti et al., “Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors,” Science, vol. 277, no. 5327, pp. 818–821, 1997. View at Publisher · View at Google Scholar · View at Scopus
  82. G. Brunetti, A. Oranger, C. Carbone et al., “Osteoblasts display different responsiveness to TRAIL-Induced apoptosis during their differentiation process,” Cell Biochemistry and Biophysics, 2013. View at Publisher · View at Google Scholar
  83. G. Mori, G. Brunetti, S. Colucci et al., “Alteration of activity and survival of osteoblasts obtained from human periodontitis patients: role of TRAIL,” Journal of Biological Regulators and Homeostatic Agents, vol. 21, no. 3-4, pp. 105–114, 2007. View at Google Scholar · View at Scopus
  84. T. W. Mak and D. A. Ferrick, “The γδ T-cell bridge: linking innate and acquired immunity,” Nature Medicine, vol. 4, no. 7, pp. 764–765, 1998. View at Publisher · View at Google Scholar · View at Scopus
  85. W. Haas, P. Pereira, and S. Tonegawa, “Gamma/delta cells,” Annual Review of Immunology, vol. 11, pp. 637–685, 1993. View at Google Scholar · View at Scopus
  86. D. I. Godfrey, H. R. MacDonald, M. Kronenberg, M. J. Smyth, and L. Van Kaer, “NKT cells: what's in a name?” Nature Reviews Immunology, vol. 4, no. 3, pp. 231–237, 2004. View at Google Scholar · View at Scopus
  87. Y. Li, G. Toraldo, A. Li et al., “B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo,” Blood, vol. 109, no. 9, pp. 3839–3848, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. G. Toraldo, C. Roggia, W.-P. Qian, R. Pacific, and M. N. Weitzmann, “IL-7 induces bone loss in vivo by induction of receptor activator of nuclear factor κB ligand and tumor necrosis factor α from T cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 1, pp. 125–130, 2003. View at Publisher · View at Google Scholar · View at Scopus
  89. V. John, J. M. Hock, L. L. Short, A. L. Glasebrook, and R. J. S. Galvin, “A role for CD8+ T lymphocytes in osteoclast differentiation in vitro,” Endocrinology, vol. 137, no. 6, pp. 2457–2463, 1996. View at Publisher · View at Google Scholar · View at Scopus
  90. D. Grcevic, S.-K. Lee, A. Marusic, and J. A. Lorenzo, “Depletion of CD4 and CD8 T lymphocytes in mice in vivo enhances 1,25-dihydroxyvitamin D3-stimulated osteoclast-like cell formation in vitro by a mechanism that is dependent on prostaglandin synthesis,” Journal of Immunology, vol. 165, no. 8, pp. 4231–4238, 2000. View at Google Scholar · View at Scopus
  91. Y.-Y. Kung, U. Felge, I. Sarosi et al., “Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand,” Nature, vol. 402, no. 6759, pp. 304–309, 1999. View at Publisher · View at Google Scholar · View at Scopus
  92. S. Colucci, G. Brunetti, F. P. Cantatore et al., “Lymphocytes and synovial fluid fibroblasts support osteoclastogenesis through RANKL, TNFα, and IL-7 in an in vitro model derived from human psoriatic arthritis,” Journal of Pathology, vol. 212, no. 1, pp. 47–55, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. Y.-T. A. Teng, H. Nguyen, X. Gao et al., “Functional human T-cell immunity and osteoprotegerin ligand control alveolar bone destruction in periodontal infection,” Journal of Clinical Investigation, vol. 106, no. 6, pp. R59–R67, 2000. View at Google Scholar · View at Scopus
  94. G. Brunetti, S. Colucci, P. Pignataro et al., “T cells support osteoclastogenesis in an in vitro model derived from human periodontitis patients,” Journal of Periodontology, vol. 76, no. 10, pp. 1675–1680, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. S. Colucci, G. Brunetti, R. Rizzi et al., “T cells support osteoclastogenesis in an in vitro model derived from human multiple myeloma bone disease: the role of the OPG/TRAIL interaction,” Blood, vol. 104, no. 12, pp. 3722–3730, 2004. View at Publisher · View at Google Scholar · View at Scopus
  96. M. F. Faienza, G. Brunetti, S. Colucci et al., “Osteoclastogenesis in children with 21-hydroxylase deficiency on long-term glucocorticoid therapy: the role of receptor activator of nuclear factor-κB ligand/osteoprotegerin imbalance,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 7, pp. 2269–2276, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. M. N. Weitzmann and R. Pacifici, “Estrogen deficiency and bone loss: an inflammatory tale,” Journal of Clinical Investigation, vol. 116, no. 5, pp. 1186–1194, 2006. View at Publisher · View at Google Scholar · View at Scopus
  98. T. R. Mosmann, H. Cherwinski, and M. W. Bond, “Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins,” Journal of Immunology, vol. 136, no. 7, pp. 2348–2357, 1986. View at Google Scholar · View at Scopus
  99. A. K. Abbas, K. M. Murphy, and A. Sher, “Functional diversity of helper T lymphocytes,” Nature, vol. 383, no. 6603, pp. 787–793, 1996. View at Publisher · View at Google Scholar · View at Scopus
  100. T. R. Mosmann and R. L. Coffman, “TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties,” Annual Review of Immunology, vol. 7, pp. 145–173, 1989. View at Google Scholar · View at Scopus
  101. K. Sato, A. Suematsu, K. Okamoto et al., “Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction,” Journal of Experimental Medicine, vol. 203, no. 12, pp. 2673–2682, 2006. View at Publisher · View at Google Scholar · View at Scopus
  102. L. E. Harrington, P. R. Mangan, and C. T. Weaver, “Expanding the effector CD4 T-cell repertoire: the Th17 lineage,” Current Opinion in Immunology, vol. 18, no. 3, pp. 349–356, 2006. View at Publisher · View at Google Scholar · View at Scopus
  103. R. A. Seder and W. E. Paul, “Acquisition of lymphokine-producing phenotype by CD4+ T cells,” Annual Review of Immunology, vol. 12, pp. 635–673, 1994. View at Google Scholar · View at Scopus
  104. J. A. Bluestone and A. K. Abbas, “Natural versus adaptive regulatory T cells,” Nature Reviews Immunology, vol. 3, no. 3, pp. 253–257, 2003. View at Publisher · View at Google Scholar · View at Scopus
  105. S. L. Reiner, “Development in motion: helper T cells at work,” Cell, vol. 129, no. 1, pp. 33–36, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. E. Volpe, N. Servant, R. Zollinger et al., “A critical function for transforming growth factor-β, interleukin 23 and proinflammatory cytokines in driving and modulating human TH-17 responses,” Nature Immunology, vol. 9, no. 6, pp. 650–657, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. S. Kotake, Y. Nanke, M. Mogi et al., “IFN-γ-producing human T cells directly induce osteoclastogenesis from human monocytes via the expression of RANKL,” European Journal of Immunology, vol. 35, no. 11, pp. 3353–3363, 2005. View at Publisher · View at Google Scholar · View at Scopus
  108. I. E. Adamopoulos and E. P. Bowman, “Immune regulation of bone loss by Th17 cells,” Arthritis Research and Therapy, vol. 10, no. 5, p. 225, 2008. View at Google Scholar
  109. I. E. Adamopoulos, C.-C. Chao, R. Geissler et al., “Interleukin-17A upregulates receptor activator of NF-κB on osteoclast precursors,” Arthritis Research and Therapy, vol. 12, no. 1, article R29, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. K. Noonan, L. Marchionni, J. Anderson, D. Pardoll, G. D. Roodman, and I. Borrello, “A novel role of IL-17-producing lymphocytes in mediating lytic bone disease in multiple myeloma,” Blood, vol. 116, no. 18, pp. 3554–3563, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. M. S. Maddur, P. Miossec, S. V. Kaveri, and J. Bayry, “Th17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies,” American Journal of Pathology, vol. 181, no. 1, pp. 8–18, 2012. View at Google Scholar
  112. M. M. Zaiss, R. Axmann, J. Zwerina et al., “Treg cells suppress osteoclast formation: a new link between the immune system and bone,” Arthritis and Rheumatism, vol. 56, no. 12, pp. 4104–4112, 2007. View at Publisher · View at Google Scholar · View at Scopus
  113. M. M. Zaiss, B. Frey, A. Hess et al., “Regulatory T cells protect from local and systemic bone destruction in arthritis,” Journal of Immunology, vol. 184, no. 12, pp. 7238–7246, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. H. Kelchtermans, L. Geboes, T. Mitera, D. Huskens, G. Leclercq, and P. Matthys, “Activated CD4+CD25+ regulatory T cells inhibit osteoclastogenesis and collagen-induced arthritis,” Annals of the Rheumatic Diseases, vol. 68, no. 5, pp. 744–750, 2009. View at Publisher · View at Google Scholar · View at Scopus
  115. Y. G. Kim, C.-K. Lee, S.-S. Nah, S. H. Mun, B. Yoo, and H.-B. Moon, “Human CD4+CD25+ regulatory T cells inhibit the differentiation of osteoclasts from peripheral blood mononuclear cells,” Biochemical and Biophysical Research Communications, vol. 357, no. 4, pp. 1046–1052, 2007. View at Publisher · View at Google Scholar · View at Scopus
  116. C. Y. Luo, L. Wang, C. Sun, and D. J. Li, “Estrogen enhances the functions of CD4 CD25 Foxp3 regulatory T cells that suppress osteoclast differentiation and bone resorption in vitro,” Cellular and Molecular Immunology, vol. 8, no. 1, pp. 50–58, 2011. View at Publisher · View at Google Scholar · View at Scopus
  117. K. Wing, T. Yamaguchi, and S. Sakaguchi, “Cell-autonomous and -non-autonomous roles of CTLA-4 in immune regulation,” Trends in Immunology, vol. 32, no. 9, pp. 428–433, 2011. View at Publisher · View at Google Scholar · View at Scopus
  118. R. Axmann, S. Herman, M. Zaiss et al., “CTLA-4 directly inhibits osteoclast formation,” Annals of the Rheumatic Diseases, vol. 67, no. 11, pp. 1603–1609, 2008. View at Publisher · View at Google Scholar · View at Scopus
  119. Y. Choi, K. M. Woo, S. H. Ko et al., “Osteoclastogenesis is enhanced by activated B cells but suppressed by activated CD8+ T cells,” European Journal of Immunology, vol. 31, no. 7, pp. 2179–2188, 2001. View at Google Scholar
  120. M. Terauchi, J.-Y. Li, B. Bedi et al., “T Lymphocytes Amplify the Anabolic Activity of Parathyroid Hormone through Wnt10b Signaling,” Cell Metabolism, vol. 10, no. 3, pp. 229–240, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. B. Bedi, J.-Y. Li, H. Tawfeek et al., “Silencing of parathyroid hormone (PTH) receptor 1 in T cells blunts the bone anabolic activity of PTH,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 12, pp. E725–E733, 2012. View at Publisher · View at Google Scholar · View at Scopus
  122. K. Zhang, S. Kim, V. Cremasco et al., “CD8+ T cells regulate bone tumor burden independent of osteoclast resorption,” Cancer Research, vol. 71, no. 14, pp. 4799–4808, 2011. View at Publisher · View at Google Scholar · View at Scopus
  123. M. Allez, J. Brimnes, I. Dotan, and L. Mayer, “Expansion of CD8+ T cells with regulatory function after interaction with intestinal epithelial cells,” Gastroenterology, vol. 123, no. 5, pp. 1516–1526, 2002. View at Google Scholar · View at Scopus
  124. A. H. Banham, F. M. Powrie, and E. Suri-Payer, “FOXP3+ regulatory T cells: current controversies and future perspectives,” European Journal of Immunology, vol. 36, no. 11, pp. 2832–2836, 2006. View at Publisher · View at Google Scholar · View at Scopus
  125. J. Brimnes, M. Allez, I. Dotan, L. Shao, A. Nakazawa, and L. Mayer, “Defects in CD8+ regulatory T cells in the lamina propria of patients with inflammatory bowel disease,” Journal of Immunology, vol. 174, no. 9, pp. 5814–5822, 2005. View at Google Scholar · View at Scopus
  126. J. Correale and A. Villa, “Role of CD8+ CD25+ Foxp3+ regulatory T cells in multiple sclerosis,” Annals of Neurology, vol. 67, no. 5, pp. 625–638, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. M. A. Gavin, J. P. Rasmussen, J. D. Fontenot et al., “Foxp3-dependent programme of regulatory T-cell differentiation,” Nature, vol. 445, no. 7129, pp. 771–775, 2007. View at Publisher · View at Google Scholar · View at Scopus
  128. J. Y. Niederkorn, “Emerging concepts in CD8+ T regulatory cells,” Current Opinion in Immunology, vol. 20, no. 3, pp. 327–331, 2008. View at Publisher · View at Google Scholar · View at Scopus
  129. Z. S. Buchwald, J. R. Kiesel, R. Di Paolo, M. S. Pagadala, and R. Aurora, “Osteoclast activated FoxP3+ CD8+ T-cells suppress bone resorption in vitro,” PLoS ONE, vol. 7, no. 6, Article ID e38199, 2012. View at Google Scholar
  130. L. L. Lanier, “NK cell recognition,” Annual Review of Immunology, vol. 23, pp. 225–274, 2005. View at Publisher · View at Google Scholar · View at Scopus
  131. M. A. Cooper, T. A. Fehniger, S. C. Turner et al., “Human natural killer cells: a unique innate immunoregulatory role for the CD56bright subset,” Blood, vol. 97, no. 10, pp. 3146–3151, 2001. View at Publisher · View at Google Scholar · View at Scopus
  132. A. Martín-Fontecha, L. L. Thomsen, S. Brett et al., “Induced recruitment of NK cells to lymph nodes provides IFN-γ for TH1 priming,” Nature Immunology, vol. 5, no. 12, pp. 1260–1265, 2004. View at Publisher · View at Google Scholar · View at Scopus
  133. J. A. Wilder, C. Y. Koh, and D. Yuan, “The role of NK cells during in vivo antigen-specific antibody responses,” Journal of Immunology, vol. 156, no. 1, pp. 146–152, 1996. View at Google Scholar · View at Scopus
  134. M. Hu, J. H. D. Bassett, L. Danks et al., “Activated invariant NKT cells regulate osteoclast development and function,” Journal of Immunology, vol. 186, no. 5, pp. 2910–2917, 2011. View at Publisher · View at Google Scholar · View at Scopus
  135. C. T. de Matos, L. Berq, J. Michaëlsson, L. Felländer-Tsai, K. Kärre, and K. Söderström, “Activating and inhibitory receptors on synovial fluid natural killer cells of arthritis patients: role of CD94/NKG2A in control of cytokine secretion,” Immunology, vol. 122, pp. 291–301, 2007. View at Google Scholar
  136. P. P. Tak, J. A. Kummer, C. E. Hack et al., “Granzyme-positive cytotoxic cells are specifically increased in early rheumatoid synovial tissue,” Arthritis and Rheumatism, vol. 37, no. 12, pp. 1735–1743, 1994. View at Publisher · View at Google Scholar · View at Scopus
  137. J. J. Campbell, S. Qin, D. Unutmaz et al., “Unique subpopulations of CD56+ NK and NK-T peripheral blood lymphocytes identified by chemokine receptor expression repertoire,” Journal of Immunology, vol. 166, no. 11, pp. 6477–6482, 2001. View at Google Scholar · View at Scopus
  138. N. Dalbeth, R. Gundle, R. J. O. Davies, Y. C. G. Lee, A. J. McMichael, and M. F. C. Callan, “CD56bright NK cells are enriched at inflammatory sites and can engage with monocytes in a reciprocal program of activation,” Journal of Immunology, vol. 173, no. 10, pp. 6418–6426, 2004. View at Google Scholar · View at Scopus
  139. A. L. Zhang, P. Colmenero, U. Purath et al., “Natural killer cells trigger differentiation of monocytes into dendritic cells,” Blood, vol. 110, no. 7, pp. 2484–2493, 2007. View at Publisher · View at Google Scholar · View at Scopus
  140. I. B. Mcinnes, J. Al-Mughales, M. Field et al., “The role of interleukin-15 in T-cell migration and activation in rheumatoid arthritis,” Nature Medicine, vol. 2, no. 2, pp. 175–182, 1996. View at Publisher · View at Google Scholar · View at Scopus
  141. K. Söderströma, E. Stein, P. Colmenero et al., “Natural killer cells trigger osteoclastogenesis and bone destruction in arthritis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 29, pp. 13028–13033, 2010. View at Publisher · View at Google Scholar · View at Scopus
  142. A. C. Hayday, “γδ T Cells and the lymphoid stress-surveillance response,” Immunity, vol. 31, no. 2, pp. 184–196, 2009. View at Publisher · View at Google Scholar · View at Scopus
  143. Y. Tanaka, C. T. Morita, Y. Tanaka, E. Nieves, M. B. Brenner, and B. R. Bloom, “Natural and synthetic non-peptide antigens recognized by human γδ T cells,” Nature, vol. 375, no. 6527, pp. 155–158, 1995. View at Google Scholar · View at Scopus
  144. J. Strid, S. J. Roberts, R. B. Filler et al., “Acute upregulation of an NKG2D ligand promotes rapid reorganization of a local immune compartment with pleiotropic effects on carcinogenesis,” Nature Immunology, vol. 9, no. 2, pp. 146–154, 2008. View at Publisher · View at Google Scholar · View at Scopus
  145. S. Kalyan, E. S. Quabius, J. Wiltfang, H. Mönig, and D. Kabelitz, “Can peripheral blood γδ T cells predict osteonecrosis of the jaw? An immunological perspective on the adverse drug-effects of aminobisphosphonate therapy,” Journal of Bone and Mineral Research, vol. 28, no. 4, pp. 728–735, 2013. View at Publisher · View at Google Scholar
  146. M. N. Weitzmann, “Do gamma delta T-cells predict osteonecrosis of the jaw?” Journal of Bone and Mineral Research, vol. 28, pp. 723–727, 2013. View at Google Scholar
  147. M. C. Horowitz, J. A. Fretz, and J. A. Lorenzo, “How B cells influence bone biology in health and disease,” Bone, vol. 47, no. 3, pp. 472–479, 2010. View at Publisher · View at Google Scholar · View at Scopus
  148. Y. Choi, K. M. Woo, S. H. Ko et al., “Osteoclastogenesis is enhanced by activated B cells but suppressed by activated CD8 T cells,” European Journal F Immunology, vol. 31, pp. 2179–2188, 2001. View at Google Scholar
  149. N. Manabe, H. Kawaguchi, H. Chikuda et al., “Connection between B lymphocyte and osteoclast differentiation pathways,” Journal of Immunology, vol. 167, no. 5, pp. 2625–2631, 2001. View at Google Scholar · View at Scopus
  150. S. Colucci, G. Mori, G. Brunetti et al., “Interleukin-7 production by B lymphocytes affects the T cell-dependent osteoclast formation in an in vitro model derived from human periodontitis patients,” International Journal of Immunopathology and Pharmacology, vol. 18, no. 3, pp. 13–19, 2005. View at Google Scholar · View at Scopus
  151. A. Oranger, C. Carbone, M. Izzo, and M. Grano, “Cellular mechanisms of multiple myeloma bone disease,” Clinical and Developmental Immunology, vol. 2013, Article ID 289458, 11 pages, 2013. View at Publisher · View at Google Scholar
  152. U. Heider, C. Langelotz, C. Jakob et al., “Expression of receptor activator of nuclear factor κB ligand on bone marrow plasma cells correlates with osteolytic bone disease in patients with multiple myeloma,” Clinical Cancer Research, vol. 9, no. 4, pp. 1436–1440, 2003. View at Google Scholar · View at Scopus
  153. S. Colucci, G. Brunetti, G. Mori et al., “Soluble decoy receptor 3 modulates the survival and formation of osteoclasts from multiple myeloma bone disease patients,” Leukemia, vol. 23, no. 11, pp. 2139–2146, 2009. View at Publisher · View at Google Scholar · View at Scopus
  154. N. Giuliani, S. Colla, R. Sala et al., “Human myeloma cells stimulate the receptor activator of nuclear factor-κB ligand (RANKL) in T lymphocytes: a potential role in multiple myeloma bone disease,” Blood, vol. 100, no. 13, pp. 4615–4621, 2002. View at Publisher · View at Google Scholar · View at Scopus
  155. N. Giuliani, S. Colla, F. Morandi et al., “Myeloma cells block RUNX2/CBFA1 activity in human bone marrow osteoblast progenitors and inhibit osteoblast formation and differentiation,” Blood, vol. 106, pp. 2472–2483, 2005. View at Google Scholar
  156. C. Miyaura, Y. Onoe, M. Inada et al., “Increased B-lymphopoiesis by interleukin 7 induces bone loss in mice with intact ovarian function: similarity to estrogen deficiency,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 17, pp. 9360–9365, 1997. View at Publisher · View at Google Scholar · View at Scopus
  157. S. Colucci, G. Brunetti, A. Oranger et al., “Myeloma cells suppress osteoblasts through sclerostin secretion,” Blood Cancer Journal, vol. 1, no. 6, article e27, 2011. View at Google Scholar
  158. G. Brunetti, A. Oranger, G. Mori et al., “Sclerostin is overexpressed by plasma cells from multiple myeloma patients,” Annals of the New York Academy of Sciences, vol. 1237, no. 1, pp. 19–23, 2011. View at Publisher · View at Google Scholar · View at Scopus
  159. T. Masuzawa, C. Miyaura, Y. Onoe et al., “Estrogen deficiency stimulates B lymphopoiesis in mouse bone marrow,” Journal of Clinical Investigation, vol. 94, no. 3, pp. 1090–1097, 1994. View at Google Scholar · View at Scopus
  160. M. C. Erlandsson, C. A. Jonsson, U. Islander, C. Ohlsson, and H. Carlsten, “Oestrogen receptor specificity in oestradiol-mediated effects on B lymphopoiesis and immunoglobulin production in male mice,” Immunology, vol. 108, no. 3, pp. 346–351, 2003. View at Publisher · View at Google Scholar · View at Scopus
  161. T. Sato, T. Shibata, K. Ikeda, and K. Watanabe, “Generation of bone-resorbing osteoclasts from B220+ cells: its role in accelerated osteoclastogenesis due to estrogen deficiency,” Journal of Bone and Mineral Research, vol. 16, no. 12, pp. 2215–2221, 2001. View at Google Scholar · View at Scopus
  162. M. Kanematsu, T. Sato, H. Takai, K. Watanabe, K. Ikeda, and Y. Yamada, “Prostaglandin E2 induces expression of receptor activator of nuclear factor-κB ligand/osteoprotegrin ligand on pre-B cells: implications for accelerated osteoclastogenesis in estrogen deficiency,” Journal of Bone and Mineral Research, vol. 15, no. 7, pp. 1321–1329, 2000. View at Google Scholar · View at Scopus
  163. G. Eghbali-Fatourechi, S. Khosla, A. Sanyal, W. J. Boyle, D. L. Lacey, and B. L. Riggs, “Role of RANK ligand in mediating increased bone resorption in early postmenopausal women,” Journal of Clinical Investigation, vol. 111, no. 8, pp. 1221–1230, 2003. View at Publisher · View at Google Scholar · View at Scopus
  164. M. N. Weitzmann, S. Cenci, J. Haug, C. Brown, J. Di Persio, and R. Pacifici, “B lymphocytes inhibit human osteoclastogenesis by secretion of TGFbeta,” Journal of Cellular Biochemistry, vol. 78, pp. 318–324, 2000. View at Google Scholar
  165. C. Chenu, J. Pfeilschifter, G. R. Mundy, and G. D. Roodman, “Transforming growth factor β inhibits formation of osteoclast-like cells in long-term human marrow cultures,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 15, pp. 5683–5687, 1988. View at Google Scholar · View at Scopus
  166. D. E. Hughes, A. Dai, J. C. Tiffee, H. H. Li, G. R. Munoy, and B. F. Boyce, “Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-β,” Nature Medicine, vol. 2, no. 10, pp. 1132–1135, 1996. View at Publisher · View at Google Scholar · View at Scopus
  167. K. Thirunavukkarasu, R. R. Miles, D. L. Halladay et al., “Stimulation of osteoprotegerin (OPG) gene expression by transforming growth factor-β (TGF-β). Mapping of the OPG promoter region that mediates TGF-β effects,” Journal of Biological Chemistry, vol. 276, no. 39, pp. 36241–36250, 2001. View at Publisher · View at Google Scholar · View at Scopus
  168. B. Klausen, H. P. Hougen, and N. E. Fiehn, “Increased periodontal bone loss in temporarily B lymphocyte-deficient rats,” Journal of Periodontal Research, vol. 24, no. 6, pp. 384–390, 1989. View at Google Scholar · View at Scopus
  169. M. Onal, J. Xiong, X. Chen et al., “Receptor activator of nuclear factor kappaB ligand (RANKL) protein expression by B lymphocytes contributes to ovariectomy-induced bone loss,” The Journal of Biological Chemistry, vol. 287, pp. 29851–29860, 2012. View at Google Scholar
  170. N. Manabe, H. Kawaguchi, H. Chikuda et al., “Connection between B lymphocyte and osteoclast differentiation pathways,” Journal of Immunology, vol. 167, no. 5, pp. 2625–2631, 2001. View at Google Scholar · View at Scopus
  171. T. Kawai, T. Matsuyama, Y. Hosokawa et al., “B and T lymphocytes are the primary sources of RANKL in the bone resorptive lesion of periodontal disease,” American Journal of Pathology, vol. 169, no. 3, pp. 987–998, 2006. View at Publisher · View at Google Scholar · View at Scopus
  172. M. Kanematsu, T. Sato, H. Takai, K. Watanabe, K. Ikeda, and Y. Yamada, “Prostaglandin E2 induces expression of receptor activator of nuclear factor-κB ligand/osteoprotegrin ligand on pre-B cells: implications for accelerated osteoclastogenesis in estrogen deficiency,” Journal of Bone and Mineral Research, vol. 15, no. 7, pp. 1321–1329, 2000. View at Google Scholar · View at Scopus
  173. T. Vikulina, X. Fan, M. Yamaguchi et al., “Alterations in the immuno-skeletal interface drive bone destruction in HIV-1 transgenic rats,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 31, pp. 13848–13853, 2010. View at Publisher · View at Google Scholar · View at Scopus
  174. Y. Choi and J. J. Kim, “B cells activated in the presence of Th1 cytokines inhibit osteoclastogenesis,” Experimental and Molecular Medicine, vol. 35, no. 5, pp. 385–392, 2003. View at Google Scholar · View at Scopus
  175. T. J. Yun, P. M. Chaudhary, G. L. Shu et al., “OPG/FDCR-1, a TNF receptor family member, is expressed in lymphoid cells and is up-regulated by ligating CD40,” Journal of Immunology, vol. 161, no. 11, pp. 6113–6121, 1998. View at Google Scholar · View at Scopus
  176. I. S. Grewal and R. A. Flavell, “CD40 and CD154 in cell-mediated immunity,” Annual Review of Immunology, vol. 16, pp. 111–135, 1998. View at Publisher · View at Google Scholar · View at Scopus
  177. M. Wüthrich, P. L. Fisette, H. I. Filutowicz, and B. S. Klein, “Differential requirements of T cell subsets for CD40 costimulation in immunity to Blastomyces dermatitidis,” Journal of Immunology, vol. 176, no. 9, pp. 5538–5547, 2006. View at Google Scholar · View at Scopus
  178. M. Collin, N. McGovern, and M. Haniffa, “Human dendritic cell subsets,” Immunology, 2013. View at Publisher · View at Google Scholar
  179. R. M. Steinman and J. Banchereau, “Taking dendritic cells into medicine,” Nature, vol. 449, no. 7161, pp. 419–426, 2007. View at Publisher · View at Google Scholar · View at Scopus
  180. H. J. McKenna, K. L. Stocking, R. E. Miller et al., “Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells,” Blood, vol. 95, no. 11, pp. 3489–3497, 2000. View at Google Scholar · View at Scopus
  181. C. Cirrincione, N. Pimpinelli, L. Orlando, and P. Romagnoli, “Lamina propria dendritic cells express activation markers and contact lymphocytes in chronic periodontitis,” Journal of Periodontology, vol. 73, no. 1, pp. 45–52, 2002. View at Publisher · View at Google Scholar · View at Scopus
  182. J. Highton, A. Kean, P. A. Hessian, J. Thomson, J. Rietveld, and D. N. J. Hart, “Cells expressing dendritic cell markers are present in the rheumatoid nodule,” Journal of Rheumatology, vol. 27, no. 2, pp. 339–346, 2000. View at Google Scholar · View at Scopus
  183. R. Thomas, K. P. A. MacDonald, A. R. Pettit, L. L. Cavanagh, J. Padmanabha, and S. Zehntner, “Dendritic cells and the pathogenesis of rheumatoid arthritis,” Journal of Leukocyte Biology, vol. 66, no. 2, pp. 286–292, 1999. View at Google Scholar · View at Scopus
  184. G. Page, S. Lebecque, and P. Miossec, “Anatomic localization of immature and mature dendritic cells in an ectopic lymphoid organ: correlation with selective chemokine expression in rheumatoid synovium,” Journal of Immunology, vol. 168, no. 10, pp. 5333–5341, 2002. View at Google Scholar · View at Scopus
  185. G. Page and P. Miossec, “RANK and RANKL expression as markers of dendritic cell-T cell interactions in paired samples of rheumatoid synovium and lymph nodes,” Arthritis and Rheumatism, vol. 52, no. 8, pp. 2307–2312, 2005. View at Publisher · View at Google Scholar · View at Scopus
  186. C. W. Cutler and R. Jotwani, “Dendritic cells at the oral mucosal interface,” Journal of Dental Research, vol. 85, no. 8, pp. 678–689, 2006. View at Publisher · View at Google Scholar · View at Scopus
  187. F. Santiago-Schwarz, P. Anand, S. Liu, and S. E. Carsons, “Dendritic cells (DCs) in rheumatoid arthritis (RA): progenitor cells and soluble factors contained in RA synovial fluid yield a subset of myeloid DCs that preferentially activate Th1 inflammatory-type responses,” Journal of Immunology, vol. 167, no. 3, pp. 1758–1768, 2001. View at Google Scholar · View at Scopus
  188. A. Rivollier, M. Mazzorana, J. Tebib et al., “Immature dendritic cell transdifferentiation into osteoclasts: a novel pathway sustained by the rheumatoid arthritis microenvironment,” Blood, vol. 104, no. 13, pp. 4029–4037, 2004. View at Publisher · View at Google Scholar · View at Scopus
  189. S. L. Teitelbaum and F. P. Ross, “Genetic regulation of osteoclast development and function,” Nature Reviews Genetics, vol. 4, no. 8, pp. 638–649, 2003. View at Publisher · View at Google Scholar · View at Scopus
  190. G. Schuler, M. B. Lutz, A. Bender et al., “A guide to the isolation and propagation of dendritic cells,” in Dendritic Cells: Biology and Clinical Applications, M. T. Lotze and A. W. Thomson, Eds., pp. 515–533, Academic Press, San Diego, Calif, USA, 1999. View at Google Scholar
  191. M. Alnaeeli, J. M. Penninger, and Y.-T. A. Teng, “Immune interactions with CD4+ T cells promote the development of functional osteoclasts from murine CD11c+ dendritic cells,” Journal of Immunology, vol. 177, no. 5, pp. 3314–3326, 2006. View at Google Scholar · View at Scopus
  192. D. Chauhan, A. V. Singh, M. Brahmandam et al., “Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target,” Cancer Cell, vol. 16, no. 4, pp. 309–323, 2009. View at Publisher · View at Google Scholar · View at Scopus
  193. A. Kukreja, S. Radfar, B.-H. Sun, K. Insogna, and M. V. Dhodapkar, “Dominant role of CD47-thrombospondin-1 interactions in myeloma-induced fusion of human dendritic cells: implications for bone disease,” Blood, vol. 114, no. 16, pp. 3413–3421, 2009. View at Publisher · View at Google Scholar · View at Scopus
  194. M. Tucci, S. Stucci, S. Strippoli, F. Dammacco, and F. Silvestris, “Dendritic cells and malignant plasma cells: an alliance in multiple myeloma tumor progression?” Oncologist, vol. 16, no. 7, pp. 1040–1048, 2011. View at Publisher · View at Google Scholar · View at Scopus
  195. K. M. Dhodapkar, S. Barbuto, P. Matthews et al., “Dendritic cells mediate the induction of polyfunctional human IL17-producing cells (Th17-1 cells) enriched in the bone marrow of patients with myeloma,” Blood, vol. 112, no. 7, pp. 2878–2885, 2008. View at Publisher · View at Google Scholar · View at Scopus
  196. L. Jacobs, T. S. Nawrot, B. De Geus et al., “Subclinical responses in healthy cyclists briefly exposed to traffic-related air pollution: an intervention study,” Environmental Health, vol. 9, no. 1, article 64, 2010. View at Publisher · View at Google Scholar · View at Scopus
  197. D. J. J. Waugh and C. Wilson, “The interleukin-8 pathway in cancer,” Clinical Cancer Research, vol. 14, no. 21, pp. 6735–6741, 2008. View at Publisher · View at Google Scholar · View at Scopus
  198. J. E. De Larco, B. R. K. Wuertz, and L. T. Furcht, “The potential role of neutrophils in promoting the metastatic phenotype of tumors releasing interleukin-8,” Clinical Cancer Research, vol. 10, no. 15, pp. 4895–4900, 2004. View at Publisher · View at Google Scholar · View at Scopus
  199. A. Kantarci, K. Oyaizu, and T. E. Van Dyke, “Neutrophil-mediated tissue injury in periodontal disease pathogenesis: findings from localized aggressive periodontitis,” Journal of Periodontology, vol. 74, no. 1, pp. 66–75, 2003. View at Publisher · View at Google Scholar · View at Scopus
  200. H. Hasturk, A. Kantarci, T. Ohira et al., “RvE1 protects from local inflammation and osteoclast-mediated bone destruction in periodontitis,” FASEB Journal, vol. 20, no. 2, pp. 401–403, 2006. View at Publisher · View at Google Scholar · View at Scopus
  201. D. Tanaka, T. Kagari, H. Doi, and T. Shimozato, “Essential role of neutrophils in anti-type II collagen antibody and lipopolysaccharide-induced arthritis,” Immunology, vol. 119, no. 2, pp. 195–202, 2006. View at Publisher · View at Google Scholar · View at Scopus
  202. B. T. Wipke and P. M. Allen, “Essential role of neutrophils in the initiation and progression of a murine model of rheumatoid arthritis,” Journal of Immunology, vol. 167, no. 3, pp. 1601–1608, 2001. View at Google Scholar · View at Scopus
  203. M. Chen, B. K. Lam, Y. Kanaoka et al., “Neutrophil-derived leukotriene B4 is required for inflammatory arthritis,” Journal of Experimental Medicine, vol. 203, no. 4, pp. 837–842, 2006. View at Publisher · View at Google Scholar · View at Scopus
  204. S. W. Edwards and M. B. Hallett, “Seeing the wood for the trees: the forgotten role of neutrophils in rheumatoid arthritis,” Immunology Today, vol. 18, no. 7, pp. 320–324, 1997. View at Publisher · View at Google Scholar · View at Scopus
  205. P. E. Poubelle, A. Chakravarti, M. J. Fernandes, K. Doiron, and A.-A. Marceau, “Differential expression of RANK, RANK-L, and osteoprotegerin by synovial fluid neutrophils from patients with rheumatoid arthritis and by healthy human blood neutrophils,” Arthritis Research and Therapy, vol. 9, article R25, 2007. View at Publisher · View at Google Scholar · View at Scopus
  206. A. Chakravarti, M.-A. Raquil, P. Tessier, and P. E. Poubelle, “Surface RANKL of Toll-like receptor 4-stimulated human neutrophils activates osteoclastic bone resorption,” Blood, vol. 114, no. 8, pp. 1633–1644, 2009. View at Publisher · View at Google Scholar · View at Scopus
  207. N. C. Walsh, K. A. Alexander, C. A. Manning et al., “Activated human T cells express alternative mRNA transcripts encoding a secreted form of RANKL,” Genes and Immunity, 2013. View at Publisher · View at Google Scholar
  208. F. Kanamaru, H. Iwai, T. Ikeda, A. Nakajima, I. Ishikawa, and M. Azuma, “Expression of membrane-bound and soluble receptor activator of NF-κB ligand (RANKL) in human T cells,” Immunology Letters, vol. 94, no. 3, pp. 239–246, 2004. View at Publisher · View at Google Scholar · View at Scopus
  209. G. Brunetti, M. F. Faienza, L. Piacente et al., “High dickkopf-1 levels in sera and leukocytes from children with 21-hydroxylase deficiency on chronic glucocorticoid treatment,” American Journal of Physiology, Endocrinology and Metabolism, vol. 304, pp. E546–E554, 2013. View at Google Scholar
  210. I. Allaeys, D. Rusu, S. Picard, M. Pouliot, P. Borgeat, and P. E. Poubelle, “Osteoblast retraction induced by adherent neutrophils promotes osteoclast bone resorption: implication for altered bone remodeling in chronic gout,” Laboratory Investigation, vol. 91, no. 6, pp. 905–920, 2011. View at Publisher · View at Google Scholar · View at Scopus