Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2013, Article ID 859761, 7 pages
http://dx.doi.org/10.1155/2013/859761
Review Article

Late and Chronic Antibody-Mediated Rejection: Main Barrier to Long Term Graft Survival

1Department of Renal Transplantation, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou 510630, China
2Department of Liver Transplantation, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou 510630, China

Received 27 June 2013; Accepted 3 September 2013

Academic Editor: Xian Li

Copyright © 2013 Qiquan Sun and Yang Yang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. A. Wolfe, V. B. Ashby, E. L. Milford et al., “Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant,” New England Journal of Medicine, vol. 341, no. 23, pp. 1725–1730, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Li and C. W. Yang, “The pathogenesis and treatment of chronic allograft nephropathy,” Nature Reviews Nephrology, vol. 5, no. 9, pp. 513–519, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. B. J. Nankivell and D. R. Kuypers, “Diagnosis and prevention of chronic kidney allograft loss,” The Lancet, vol. 378, no. 9800, pp. 1428–1437, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. R. B. Colvin and R. N. Smith, “Antibody-mediated organ-allograft rejection,” Nature Reviews Immunology, vol. 5, no. 10, pp. 807–817, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. S. K. Takemoto, A. Zeevi, S. Feng et al., “National conference to assess antibody-mediated rejection in solid organ transplantation,” American Journal of Transplantation, vol. 4, no. 7, pp. 1033–1041, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Einecke, B. Sis, J. Reeve et al., “Antibody-mediated microcirculation injury is the major cause of late kidney transplant failure,” American Journal of Transplantation, vol. 9, no. 11, pp. 2520–2531, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Sellarés, D. G. De Freitas, M. Mengel et al., “Understanding the causes of kidney transplant failure: the dominant role of antibody-mediated rejection and nonadherence,” American Journal of Transplantation, vol. 12, no. 2, pp. 388–399, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. R. B. Colvin, “Antibody-mediated renal allograft rejection: diagnosis and pathogenesis,” Journal of the American Society of Nephrology, vol. 18, no. 4, pp. 1046–1056, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. L. C. Racusen, R. B. Colvin, K. Solez et al., “Antibody-mediated rejection criteria—an addition to the Banff 97 classification of renal allograft rejection,” American Journal of Transplantation, vol. 3, no. 6, pp. 708–714, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Sis, G. S. Jhangri, S. Bunnag, K. Allanach, B. Kaplan, and P. F. Halloran, “Endothelial gene expression in kidney transplants with alloantibody indicates Antibody-mediated damage despite lack of C4d staining,” American Journal of Transplantation, vol. 9, no. 10, pp. 2312–2323, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Sis and P. F. Halloran, “Endothelial transcripts uncover a previously unknown phenotype: C4d-negative antibody-mediated rejection,” Current Opinion in Organ Transplantation, vol. 15, no. 1, pp. 42–48, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. F. G. Cosio, J. M. Gloor, S. Sethi, and M. D. Stegall, “Transplant glomerulopathy,” American Journal of Transplantation, vol. 8, no. 3, pp. 492–496, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. Q. Sun, X. Huang, S. Jiang, C. Zeng, and Z. Liu, “Picking transplant glomerulopathy out of the CAN: evidence from a clinico-pathological evaluation,” BMC Nephrology, vol. 13, article 128, 2012. View at Google Scholar
  14. M. Haas, “Pathology of C4d-negative antibody-mediated rejection in renal allografts,” Current Opinion in Organ Transplantation, vol. 18, pp. 319–326, 2013. View at Google Scholar
  15. P. F. Halloran and J. Sellares, “Microcirculation lesions alone are not reliable for identifying antibody-mediated rejection,” American Journal of Transplantation, vol. 13, pp. 1931–1932, 2013. View at Google Scholar
  16. Q. Sun, D. Cheng, M. Zhang, Q. He, Z. Chen, and Z. Liu, “Predominance of intraglomerular T-bet or GATA3 may determine mechanism of transplant rejection,” Journal of the American Society of Nephrology, vol. 22, no. 2, pp. 246–252, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. Q. Sun, M. Zhang, K. Xie et al., “Endothelial injury in transplant glomerulopathy is correlated with transcription factor T-bet expression,” Kidney International, vol. 82, pp. 321–329, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Solez, R. B. Colvin, L. C. Racusen et al., “Banff 07 classification of renal allograft pathology: updates and future directions,” American Journal of Transplantation, vol. 8, no. 4, pp. 753–760, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. Q. Sun, Z.-H. Liu, S. Ji et al., “Late and early C4d-positive acute rejection: different clinico-histopathological subentities in renal transplantation,” Kidney International, vol. 70, no. 2, pp. 377–383, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Dorje, K. Midtvedt, H. Holdaas et al., “Early versus late acute antibody-mediated rejection in renal transplant recipients,” Transplantation, 2013. View at Google Scholar
  21. R. C. Walsh, P. Brailey, A. Girnita et al., “Early and late acute antibody-mediated rejection differ immunologically and in response to proteasome inhibition,” Transplantation, vol. 91, no. 11, pp. 1218–1226, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Pascual, M. D. Samaniego, J. R. Torrealba et al., “Antibody-mediated rejection of the kidney after simultaneous pancreas-kidney transplantation,” Journal of the American Society of Nephrology, vol. 19, no. 4, pp. 812–824, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. J. R. Chapman, P. J. O'Connell, and B. J. Nankivell, “Chronic renal allograft dysfunction,” Journal of the American Society of Nephrology, vol. 16, no. 10, pp. 3015–3026, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Solez, R. B. Colvin, L. C. Racusen et al., “Banff 05 meeting report: differential diagnosis of chronic allograft injury and elimination of chronic allograft nephropathy (CAN),” American Journal of Transplantation, vol. 7, no. 3, pp. 518–526, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. P.-C. Lee, P. I. Terasaki, S. K. Takemoto et al., “All chronic rejection failures of kidney transplants were preceded by the development of HLA antibodies,” Transplantation, vol. 74, no. 8, pp. 1192–1194, 2002. View at Google Scholar · View at Scopus
  26. M. J. Everly, L. M. Rebellato, C. E. Haisch et al., “Incidence and impact of de novo donor-specific alloantibody in primary renal allografts,” Transplantation, vol. 95, pp. 410–417, 2013. View at Google Scholar
  27. É. F. Campos, H. Tedesco-Silva, P. G. Machado, M. Franco, J. O. Medina-Pestana, and M. Gerbase-DeLima, “Post-transplant anti-HLA class II antibodies as risk factor for late kidney allograft failure,” American Journal of Transplantation, vol. 6, no. 10, pp. 2316–2320, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Wiebe, I. W. Gibson, T. D. Blydt-Hansen et al., “Evolution and clinical pathologic correlations of de novo donor-specific HLA antibody post kidney transplant,” American Journal of Transplantation, vol. 12, no. 5, pp. 1157–1167, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. V. Nickeleit and M. J. Mihatsch, “Kidney transplants, antibodies and rejection: is C4d a magic marker?” Nephrology Dialysis Transplantation, vol. 18, no. 11, pp. 2232–2239, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Singh, Q. Sun, T. Nadasdy et al., “The pathogenesis of acute allograft dysfunction in desensitized renal transplant recipients,” Clinical Transplantation, vol. 26, pp. E402–E411, 2012. View at Google Scholar
  31. C. Lefaucheur, A. Loupy, D. Vernerey et al., “Antibody-mediated vascular rejection of kidney allografts: a population-based study,” The Lancet, vol. 381, pp. 313–319, 2013. View at Google Scholar
  32. J. A. Bradley, W. M. Baldwin, A. Bingaman et al., “Antibody-mediated rejection—an ounce of prevention is worth a pound of cure,” American Journal of Transplantation, vol. 11, no. 6, pp. 1131–1139, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Morath, G. Opelz, M. Zeier, and C. Susal, “Prevention of antibody-mediated kidney transplant rejection,” Transplant International, vol. 25, pp. 633–645, 2012. View at Google Scholar
  34. T. P. Theruvath, S. L. Saidman, S. Mauiyyedi et al., “Control of antidonor antibody production with tacrolimus and mycophenolate mofetil in renal allograft recipients with chronic rejection,” Transplantation, vol. 72, no. 1, pp. 77–83, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. Q. Sun, Z.-H. Liu, Z. Cheng et al., “Treatment of early mixed cellular and humoral renal allograft rejection with tacrolimus and mycophenolate mofetil,” Kidney International, vol. 71, no. 1, pp. 24–30, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. Q. Sun, Z.-H. Liu, G. Yin et al., “Tacrolimus combined with mycophenolate mofetil can effectively reverse C4d-positive steroid-resistant acute rejection in Chinese renal allograft recipients,” Nephrology Dialysis Transplantation, vol. 21, no. 2, pp. 510–517, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Pascual, S. Saidman, N. Tolkoff-Rubin et al., “Plasma exchange and tacrolimus-mycophenolate rescue for acute humoral rejection in kidney transplantation,” Transplantation, vol. 66, pp. 1460–1464, 1999. View at Google Scholar · View at Scopus
  38. G. A. Böhmig, H. Regele, M. Exner et al., “C4d-positive acute humoral renal allograft rejection: effective treatment by immunoadsorption,” Journal of the American Society of Nephrology, vol. 12, no. 11, pp. 2482–2489, 2001. View at Google Scholar · View at Scopus
  39. S. C. Jordan, A. W. Quartel, L. S. C. Czer et al., “Posttransplant therapy using high-dose human immunoglobulin (intravenous gammaglobulin) to control acute humoral reaction in renal and cardiac allograft recipients and potential mechanism of action,” Transplantation, vol. 66, no. 6, pp. 800–808, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. D. H. Casadei, M. Del C. Rial, G. Opelz et al., “A randomized and prospective study comparing treatment with high-dose intravenous immunoglobulin with monoclonal antibodies for rescue of kidney grafts with steroid-resistant rejection,” Transplantation, vol. 71, no. 1, pp. 53–58, 2001. View at Google Scholar · View at Scopus
  41. S. Faguer, N. Kamar, C. Guilbeaud-Frugier et al., “Rituximab therapy for acute humoral rejection after kidney transplantation,” Transplantation, vol. 83, no. 9, pp. 1277–1280, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. W. R. Mulley, F. J. Hudson, B. D. Tait et al., “A single low-fixed dose of rituximab to salvage renal transplants from refractory antibody-mediated rejection,” Transplantation, vol. 87, no. 2, pp. 286–289, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. M. J. Everly, J. J. Everly, B. Susskind et al., “Bortezomib provides effective therapy for antibody- and cell-mediated acute rejection,” Transplantation, vol. 86, no. 12, pp. 1754–1761, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. S. M. Flechner, R. Fatica, M. Askar et al., “The role of proteasome inhibition with bortezomib in the treatment of antibody-mediated rejection after kidney-only or kidney-combined organ transplantation,” Transplantation, vol. 90, no. 12, pp. 1486–1492, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. F. Gonzalez-Roncero, M. Suner, G. Bernal et al., “Eculizumab treatment of acute antibody-mediated rejection in renal transplantation: case reports,” Transplantation Proceedings, vol. 44, pp. 2690–2694, 2012. View at Google Scholar
  46. J. E. Locke, C. M. Magro, A. L. Singer et al., “The use of antibody to complement protein C5 for salvage treatment of severe antibody-mediated rejection,” American Journal of Transplantation, vol. 9, no. 1, pp. 231–235, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. J. E. Locke, A. A. Zachary, M. Haas et al., “The utility of splenectomy as rescue treatment for severe acute antibody mediated rejection,” American Journal of Transplantation, vol. 7, no. 4, pp. 842–846, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. B. Kaplan, A. Gangemi, J. Thielke, J. Oberholzer, H. Sankary, and E. Benedetti, “Successful rescue of refractory, severe antibody mediated rejection with splenectomy,” Transplantation, vol. 83, no. 1, pp. 99–100, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. H. Billing, S. Rieger, J. Ovens et al., “Successful treatment of chronic antibody-mediated rejection with IVIG and rituximab in pediatric renal transplant recipients,” Transplantation, vol. 86, no. 9, pp. 1214–1221, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. T. Fehr, B. Rüsi, A. Fischer, H. Hopfer, R. P. Wüthrich, and A. Gaspert, “Rituximab and intravenous immunoglobulin treatment of chronic antibody-mediated kidney allograft rejection,” Transplantation, vol. 87, no. 12, pp. 1837–1841, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. A. Hong, H. G. Kim, S. R. Choi et al., “Effectiveness of rituximab and intravenous immunoglobulin therapy in renal transplant recipients with chronic active antibody-mediated rejection,” Transplantation Proceedings, vol. 44, no. 1, pp. 182–184, 2012. View at Publisher · View at Google Scholar · View at Scopus
  52. R. N. Smith, F. Malik, and N. Goes, “Partial therapeutic response to Rituximab for the treatment of chronic alloantibody mediated rejection of kidney allografts,” Transplant Immunology, vol. 27, pp. 107–113, 2012. View at Google Scholar
  53. D. K. Perry, J. M. Burns, H. S. Pollinger et al., “Proteasome inhibition causes apoptosis of normal human plasma cells preventing alloantibody production,” American Journal of Transplantation, vol. 9, no. 1, pp. 201–209, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. R. C. Walsh, R. R. Alloway, A. L. Girnita, and E. S. Woodle, “Proteasome inhibitor-based therapy for antibody-mediated rejection,” Kidney International, vol. 81, pp. 1067–1074, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. E. S. Woodle and M. Rubin, “Proteasome inhibitor therapy for antibody mediated rejection: initial report from a multicenter collaborative,” American Journal of Transplantation, vol. 10, no. 4: article 83, 2010. View at Google Scholar
  56. J. Ashton-Chess, H. L. Mai, V. Jovanovic et al., “Immunoproteasome beta subunit 10 is increased in chronic antibody-mediated rejection,” Kidney International, vol. 77, no. 10, pp. 880–890, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. N. Alachkar, S. M. Bagnasco, and R. A. Montgomery, “Eculizumab for the treatment of two recurrences of atypical hemolytic uremic syndrome in a kidney allograft,” Transplant International, vol. 25, pp. e93–e95, 2012. View at Google Scholar
  58. M. D. Stegall, T. Diwan, S. Raghavaiah et al., “Terminal complement inhibition decreases antibody-mediated rejection in sensitized renal transplant recipients,” American Journal of Transplantation, vol. 11, no. 11, pp. 2405–2413, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. Z. A. Stewart, T. E. Collins, A. J. Schlueter et al., “Case report: Eculizumab rescue of severe accelerated antibody-mediated rejection after ABO-incompatible kidney transplant,” Transplantation Proceedings, vol. 44, pp. 3033–3036, 2012. View at Google Scholar
  60. H. Ishida, K. Omoto, T. Shimizu et al., “Usefulness of splenectomy for chronic active antibody-mediated rejection after renal transplantation,” Transplant International, vol. 21, no. 6, pp. 602–604, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. S. G. Hubscher, “Antibody-mediated rejection in the liver allograft,” Current Opinion in Organ Transplantation, vol. 17, pp. 280–286, 2012. View at Google Scholar
  62. C. O. C. Bellamy, “Complement C4d immunohistochemistry in the assessment of liver allograft biopsy samples: applications and pitfalls,” Liver Transplantation, vol. 17, no. 7, pp. 747–750, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Ali, A. Ormsby, V. Shah et al., “Significance of complement split product C4d in ABO-compatible liver allograft: diagnosing utility in acute antibody mediated rejection,” Transplant Immunology, vol. 26, no. 1, pp. 62–69, 2012. View at Publisher · View at Google Scholar · View at Scopus
  64. U. P. Neuman and P. Neuhaus, “C4d immunostaining in acute humoral rejection after ABO blood group-incompatible liver transplantation,” Liver Transplantation, vol. 12, no. 3, pp. 356–357, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. K. Murata and W. M. Baldwin III, “Mechanisms of complement activation, C4d deposition, and their contribution to the pathogenesis of antibody-mediated rejection,” Transplantation Reviews, vol. 23, no. 3, pp. 139–150, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Stewart, G. L. Winters, M. C. Fishbein et al., “Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection,” Journal of Heart and Lung Transplantation, vol. 24, no. 11, pp. 1710–1720, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Chih, K. J. Tinckam, and H. J. Ross, “A survey of current practice for antibody-mediated rejection in heart transplantation,” American Journal of Transplantation, vol. 13, pp. 1069–1074, 2013. View at Google Scholar
  68. A. M. Hodges, H. Lyster, A. McDermott et al., “Late antibody-mediated rejection after heart transplantation following the development of de Novo Donor-specific human leukocyte antigen antibody,” Transplantation, vol. 93, no. 6, pp. 650–656, 2012. View at Publisher · View at Google Scholar · View at Scopus
  69. R. Hachem, “Antibody-mediated lung transplant rejection,” Current Respiratory Care Reports, vol. 1, pp. 157–161, 2012. View at Google Scholar
  70. C. B. Drachenberg, J. R. Torrealba, B. J. Nankivell et al., “Guidelines for the diagnosis of antibody-mediated rejection in pancreas allografts-updated Banff grading schema,” American Journal of Transplantation, vol. 11, no. 9, pp. 1792–1802, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. A. A. S. Dick and S. Horslen, “Antibody-mediated rejection after intestinal transplantation,” Current Opinion in Organ Transplantation, vol. 17, pp. 250–257, 2012. View at Publisher · View at Google Scholar · View at Scopus