Table of Contents Author Guidelines Submit a Manuscript
Journal of Immunology Research
Volume 2014, Article ID 309548, 10 pages
http://dx.doi.org/10.1155/2014/309548
Research Article

Human Adipose Tissue Macrophages Are Enhanced but Changed to an Anti-Inflammatory Profile in Obesity

1Department of Medicine and Endocrinology, MEA, Aarhus University Hospital, 8000 Aarhus, Denmark
2Department of Clinical Biochemistry, Aarhus University Hospital, 8000 Aarhus, Denmark

Received 11 November 2013; Revised 20 January 2014; Accepted 5 February 2014; Published 11 March 2014

Academic Editor: Joseph Fomusi Ndisang

Copyright © 2014 Karen Fjeldborg et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Dandona, A. Aljada, and A. Bandyopadhyay, “Inflammation: the link between insulin resistance, obesity and diabetes,” Trends in Immunology, vol. 25, no. 1, pp. 4–7, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. S. P. Weisberg, D. McCann, M. Desai, M. Rosenbaum, R. L. Leibel, and A. W. Ferrante Jr., “Obesity is associated with macrophage accumulation in adipose tissue,” Journal of Clinical Investigation, vol. 112, no. 12, pp. 1796–1808, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Cancello, C. Henegar, N. Viguerie et al., “Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss,” Diabetes, vol. 54, no. 8, pp. 2277–2286, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Trayhurn, “Hypoxia and adipose tissue function and dysfunction in obesity,” Physiological Reviews, vol. 93, no. 1, pp. 1–21, 2013. View at Publisher · View at Google Scholar
  5. E. Dalmas, K. Clément, and M. Guerre-Millo, “Defining macrophage phenotype and function in adipose tissue,” Trends in Immunology, vol. 32, no. 7, pp. 307–314, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Cinti, G. Mitchell, G. Barbatelli et al., “Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans,” Journal of Lipid Research, vol. 46, no. 11, pp. 2347–2355, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Spencer, A. Yao-Borengasser, R. Unal et al., “Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 299, no. 6, pp. E1016–E1027, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. F. O. Martinez, L. Helming, and S. Gordon, “Alternative activation of macrophages: an immunologic functional perspective,” Annual Review of Immunology, vol. 27, pp. 451–483, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. T. H. Sulahian, P. Högger, A. E. Wahner et al., “Human monocytes express CD163, which is upregulated by IL-10 and identical to p155,” Cytokine, vol. 12, no. 9, pp. 1312–1321, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Gratchev, K. Schledzewski, P. Guillot, and S. Goerdt, “Alternatively activated antigen-presenting cells: molecular repertoire, immune regulation, and healing,” Skin Pharmacology and Applied Skin Physiology, vol. 14, no. 5, pp. 272–279, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Zeyda, D. Farmer, J. Todoric et al., “Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator production,” International Journal of Obesity, vol. 31, no. 9, pp. 1420–1428, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. V. Bourlier, A. Zakaroff-Girard, A. Miranville et al., “Remodeling phenotype of human subcutaneous adipose tissue macrophages,” Circulation, vol. 117, no. 6, pp. 806–815, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. C. N. Lumeng, J. L. Bodzin, and A. R. Saltiel, “Obesity induces a phenotypic switch in adipose tissue macrophage polarization,” Journal of Clinical Investigation, vol. 117, no. 1, pp. 175–184, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. M. T. A. Nguyen, S. Favelyukis, A. Nguyen et al., “A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via toll-like receptors 2 and 4 and JNK-dependent pathways,” The Journal of Biological Chemistry, vol. 282, no. 48, pp. 35279–35292, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Aron-Wisnewsky, J. Tordjman, C. Poitou et al., “Human adipose tissue macrophages: M1 and M2 cell surface markers in subcutaneous and omental depots and after weight loss,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 11, pp. 4619–4623, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Clément, N. Viguerie, C. Poitou et al., “Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects,” FASEB Journal, vol. 18, no. 14, pp. 1657–1669, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. J. M. Wentworth, G. Naselli, W. A. Brown et al., “Pro-inflammatory CD11c+CD206+ adipose tissue macrophages are associated with insulin resistance in human obesity,” Diabetes, vol. 59, no. 7, pp. 1648–1656, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Christiansen, B. Richelsen, and J. M. Bruun, “Monocyte chemoattractant protein-1 is produced in isolated adipocytes, associated with adiposity and reduced after weight loss in morbid obese subjects,” International Journal of Obesity, vol. 29, no. 1, pp. 146–150, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Koppaka, S. Kehlenbrink, M. Carey et al., “Reduced adipose tissue macrophage content is associated with improved insulin sensitivity in thiazolidinedione-treated diabetic humans,” Diabetes, vol. 62, no. 6, pp. 1843–1854, 2013. View at Publisher · View at Google Scholar
  20. M. A. Bouhlel, B. Derudas, E. Rigamonti et al., “PPARγ activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties,” Cell Metabolism, vol. 6, no. 2, pp. 137–143, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. H. J. Møller, N. A. Peterslund, J. H. Graversen, and S. K. Moestrup, “Identification of the hemoglobin scavenger receptor/CD163 as a natural soluble protein in plasma,” Blood, vol. 99, no. 1, pp. 378–380, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. S. K. Moestrup and H. J. Moller, “CD163: a regulated hemoglobin scavenger receptor with a role in the anti-inflammatory response,” Annals of Medicine, vol. 36, no. 5, pp. 347–354, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Fjeldborg, T. Christiansen, M. Bennetzen, H. J. Moller, S. B. Pedersen, and B. Richelsen, “The macrophage specific serum marker, soluble CD163, is increased in obesity and reduced after dietary induced weight loss,” Obesity, vol. 21, no. 12, pp. 2437–2443, 2013. View at Publisher · View at Google Scholar
  24. H. J. Møller, H. Aerts, H. Grønbæk et al., “Soluble CD163: a marker molecule for monocyte/macrophage activity in disease,” Scandinavian Journal of Clinical and Laboratory Investigation, Supplement, vol. 62, no. 237, pp. 29–33, 2002. View at Google Scholar · View at Scopus
  25. H. J. Moller, A. R. Nielsen, B. K. Pedersen, and T. Parkner, “Increased plasma levels of macrophage specifc sCD163 in type 2 diabetes and obesity,” Diabetes, vol. 58, article LB27, 2009. View at Google Scholar
  26. M. V. Zanni, T. H. Burdo, H. Makimura, K. C. Williams, and S. K. Grinspoon, “Relationship between monocyte/macrophage activation marker soluble CD163 and insulin resistance in obese and normal-weight subjects,” Clinical Endocrinology, vol. 77, no. 3, pp. 385–390, 2012. View at Publisher · View at Google Scholar
  27. M. F. Bennetzen, N. Wellner, S. S. Ahmed et al., “Investigations of the human endocannabinoid system in two subcutaneous adipose tissue depots in lean subjects and in obese subjects before and after weight loss,” International Journal of Obesity, vol. 35, no. 11, pp. 1377–1384, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Christiansen, S. K. Paulsen, J. M. Bruun et al., “Comparable reduction of the visceral adipose tissue depot after a diet-induced weight loss with or without aerobic exercise in obese subjects: a 12-week randomized intervention study,” European Journal of Endocrinology, vol. 160, no. 5, pp. 759–767, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. D. R. Matthews, J. P. Hosker, A. S. Rudenski, B. A. Naylor, D. F. Treacher, and R. C. Turner, “Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man,” Diabetologia, vol. 28, no. 7, pp. 412–419, 1985. View at Google Scholar · View at Scopus
  30. A. Volund, “Conversion of insulin units to SI units,” The American Journal of Clinical Nutrition, vol. 58, no. 5, pp. 714–715, 1993. View at Google Scholar · View at Scopus
  31. H. J. Møller, K. Hald, and S. K. Moestrup, “Characterization of an enzyme-linked immunosorbent assay for soluble CD163,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 62, no. 4, pp. 293–299, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Arvidsson, M. Kwasniewski, D. M. Riaño-Pachón, and B. Mueller-Roeber, “QuantPrime—a flexible tool for reliable high-throughput primer design for quantitative PCR,” BMC Bioinformatics, vol. 9, article 465, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Michaud, R. Drolet, S. Noël, G. Paris, and A. Tchernof, “Visceral fat accumulation is an indicator of adipose tissue macrophage infiltration in women,” Metabolism, vol. 61, no. 5, pp. 689–698, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. I. Harman-Boehm, M. Blüher, H. Redel et al., “Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 6, pp. 2240–2247, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. M. E. Shaul, G. Bennett, K. J. Strissel, A. S. Greenberg, and M. S. Obin, “Dynamic, M2-like remodeling phenotypes of CD11c+ adipose tissue macrophages during high-fat diet—induced obesity in mice,” Diabetes, vol. 59, no. 5, pp. 1171–1181, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Shakeri-Manesch, M. Zeyda, J. Huber, B. Ludvik, G. Prager, and T. M. Stulnig, “Diminished upregulation of visceral adipose heme oxygenase-1 correlates with waist-to-hip ratio and insulin resistance,” International Journal of Obesity, vol. 33, no. 11, pp. 1257–1264, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Parkner, L. P. Sørensen, A. R. Nielsen et al., “Soluble CD163: a biomarker linking macrophages and insulin resistance,” Diabetologia, vol. 55, no. 6, pp. 1856–1862, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. E. O. M. de Victoria, X. Xu, J. Koska et al., “Macrophage content in subcutaneous adipose tissue: associations with adiposity, age, inflammatory markers, and whole-body insulin action in healthy pima Indians,” Diabetes, vol. 58, no. 2, pp. 385–393, 2009. View at Publisher · View at Google Scholar · View at Scopus