Table of Contents Author Guidelines Submit a Manuscript
Journal of Immunology Research
Volume 2015, Article ID 173593, 20 pages
http://dx.doi.org/10.1155/2015/173593
Research Article

Geometry Dynamics of α-Helices in Different Class I Major Histocompatibility Complexes

1Section of Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems (CeMSIIS), Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
2Institute of Information and Communication Technologies (IICT), Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 25A, 1113 Sofia, Bulgaria

Received 27 July 2015; Revised 30 September 2015; Accepted 30 September 2015

Academic Editor: Francesco Pappalardo

Copyright © 2015 Reiner Ribarics et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. Acuto, V. Di Bartolo, and F. Michel, “Tailoring T-cell receptor signals by proximal negative feedback mechanisms,” Nature Reviews Immunology, vol. 8, no. 9, pp. 699–712, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. D. N. Garboczi, P. Ghosh, U. Utz, Q. R. Fan, W. E. Biddison, and D. C. Wiley, “Structure of the complex between human T-cell receptor, viral peptide and HLA-A2,” Nature, vol. 384, no. 6605, pp. 134–141, 1996. View at Publisher · View at Google Scholar · View at Scopus
  3. Y.-H. Ding, K. J. Smith, D. N. Garboczi, U. Utz, W. E. Biddison, and D. C. Wiley, “Two human T cell receptors bind in a similar diagonal mode to the HLA- A2/Tax peptide complex using different TCR amino acids,” Immunity, vol. 8, no. 4, pp. 403–411, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. J. K. Burkhardt, “Seeing is believing: sorting out signaling events at the immunological synapse,” The Journal of Immunology, vol. 194, no. 9, pp. 4059–4060, 2015. View at Publisher · View at Google Scholar
  5. L. E. Samelson, M. D. Patel, A. M. Weissman, J. B. Harford, and R. D. Klausner, “Antigen activation of murine T cells induces tyrosine phosphorylation of a polypeptide associated with the T cell antigen receptor,” Cell, vol. 46, no. 7, pp. 1083–1090, 1986. View at Publisher · View at Google Scholar · View at Scopus
  6. G. R. Crabtree, “Contingent genetic regulatory events in T lymphocyte activation,” Science, vol. 243, no. 4889, pp. 355–361, 1989. View at Publisher · View at Google Scholar · View at Scopus
  7. L. A. Timmerman, N. A. Clipstone, S. N. Ho, J. P. Northrop, and G. R. Crabtree, “Rapid shuttling of NF-AT in discrimination of Ca2+ signals and immunosuppression,” Nature, vol. 383, no. 6603, pp. 837–840, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Weiss, R. Shields, M. Newton, B. Manger, and J. Imboden, “Ligand-receptor interactions required for commitment to the activation of the interleukin 2 gene,” Journal of Immunology, vol. 138, no. 7, pp. 2169–2176, 1987. View at Google Scholar · View at Scopus
  9. F. Pappalardo, V. Brusic, F. Castiglione, and C. Schönbach, “Computational and bioinformatics techniques for immunology,” BioMed Research International, vol. 2014, Article ID 263189, 2 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Ribarics, R. Karch, N. Ilieva, and W. Schreiner, “Geometric analysis of alloreactive HLA α-helices,” BioMed Research International, vol. 2014, Article ID 943186, 8 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Kenn, R. Ribarics, N. Ilieva, and W. Schreiner, “Finding semirigid domains in biomolecules by clustering pair-distance variations,” BioMed Research International, vol. 2014, Article ID 731325, 13 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  12. W. A. Macdonald, Z. Chen, S. Gras et al., “T cell allorecognition via molecular mimicry,” Immunity, vol. 31, no. 6, pp. 897–908, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Stacklies, M. C. Vega, M. Wilmanns, and F. Gräter, “Mechanical network in titin immunoglobulin from force distribution analysis,” PLoS Computational Biology, vol. 5, no. 3, Article ID e1000306, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Karplus and J. Kuriyan, “Molecular dynamics and protein function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 19, pp. 6679–6685, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Hischenhuber, F. Frommlet, W. Schreiner, and B. Knapp, “MH2c: characterization of major histocompatibility α-helices—an information criterion approach,” Computer Physics Communications, vol. 183, no. 7, pp. 1481–1490, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. J. A. Christopher, R. Swanson, and T. O. Baldwin, “Algorithms for finding the axis of a helix: fast rotational and parametric least-squares methods,” Computers and Chemistry, vol. 20, no. 3, pp. 339–345, 1996. View at Publisher · View at Google Scholar · View at Scopus
  17. J. A. Lopera, J. N. Sturgis, and J.-P. Duneau, “Ptuba: a tool for the visualization of helix surfaces in proteins,” Journal of Molecular Graphics and Modelling, vol. 23, no. 4, pp. 305–315, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Hischenhuber, H. Havlicek, J. Todoric, S. Höllrigl-Binder, W. Schreiner, and B. Knapp, “Differential geometric analysis of alterations in MH α-helices,” Journal of Computational Chemistry, vol. 34, no. 21, pp. 1862–1879, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Hischenhuber, H. Havlicek, J. Todoric, S. Höllrigl-Binder, W. Schreiner, and B. Knapp, “Corrigendum: differential geometric analysis of alterations in MH alpha-helices,” Journal of Computational Chemistry, vol. 34, no. 32, p. 2834, 2013. View at Google Scholar
  20. P. K. Warme, F. A. Momany, S. V. Rumball, R. W. Tuttle, and H. A. Scheraga, “Computation of structures of homologous proteins. α-lactalbumin from lysozyme,” Biochemistry, vol. 13, no. 4, pp. 768–782, 1974. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Oostenbrink, A. Villa, A. E. Mark, and W. F. Van Gunsteren, “A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6,” Journal of Computational Chemistry, vol. 25, no. 13, pp. 1656–1676, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. U. Omasits, B. Knapp, M. Neumann et al., “Analysis of key parameters for molecular dynamics of pMHC molecules,” Molecular Simulation, vol. 34, no. 8, pp. 781–793, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. W. Kabsch and C. Sander, “Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features,” Biopolymers, vol. 22, no. 12, pp. 2577–2637, 1983. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Pauling, R. B. Corey, and H. R. Branson, “The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 37, no. 4, pp. 205–211, 1951. View at Publisher · View at Google Scholar · View at Scopus
  25. W. Kabsch, “A solution for the best rotation to relate two sets of vectors,” Acta Crystallographica A, vol. 32, no. 5, pp. 922–923, 1976. View at Publisher · View at Google Scholar
  26. C. Runge, “Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten,” Zeitschrift für Mathematik und Physik, vol. 46, no. 1, pp. 224–243, 1976. View at Google Scholar
  27. J. P. Boyd and F. Xu, “Divergence (Runge Phenomenon) for least-squares polynomial approximation on an equispaced grid and Mock-Chebyshev subset interpolation,” Applied Mathematics and Computation, vol. 210, no. 1, pp. 158–168, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Peternell, H. Pottmann, and B. Ravani, “On the computational geometry of ruled surfaces,” CAD Computer Aided Design, vol. 31, no. 1, pp. 17–32, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. W. Kühnel, Differentialgeometrie Kurven—Flächen—Mannigfaltigkeiten, Vieweg+Teubner, Wiesbaden, Germany, 2008.
  30. P. W. Verbeek and L. J. van Vliet, “Curvature and bending energy in digitized 2D and 3D images,” in Proceedings of the 8th Scandinavian Conference on Image Analysis, pp. 1403–1410, Tromsø, Norway, May 1993.
  31. M. C. Lawrence and P. M. Colman, “Shape complementarity at protein/protein interfaces,” Journal of Molecular Biology, vol. 234, no. 4, pp. 946–950, 1993. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Aivazian and L. J. Stern, “Phosphorylation of T cell receptor zeta is regulated by a lipid dependent folding transition,” Nature Structural Biology, vol. 7, no. 11, pp. 1023–1026, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Choudhuri and P. A. van der Merwe, “Molecular mechanisms involved in T cell receptor triggering,” Seminars in Immunology, vol. 19, no. 4, pp. 255–261, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. M. L. Dustin and D. Depoil, “New insights into the T cell synapse from single molecule techniques,” Nature Reviews Immunology, vol. 11, no. 10, pp. 672–684, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. S. T. Kim, K. Takeuchi, Z.-Y. J. Sun et al., “The αβ T cell receptor is an anisotropic mechanosensor,” Journal of Biological Chemistry, vol. 284, no. 45, pp. 31028–31037, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Xu, E. Gagnon, M. E. Call et al., “Regulation of T cell receptor activation by dynamic membrane binding of the CD3epsilon cytoplasmic tyrosine-based motif,” Cell, vol. 135, no. 4, pp. 702–713, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. M. S. Kuhns, A. T. Girvin, L. O. Klein et al., “Evidence for a functional sidedness to the αβTCR,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 11, pp. 5094–5099, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Zhang, S.-P. Cordoba, O. Dushek, and P. A. van der Merwe, “Basic residues in the T-cell receptor zeta cytoplasmic domain mediate membrane association and modulate signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 48, pp. 19323–19328, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Martinez-Martin, R. M. Risueno, A. Morreale et al., “Cooperativity between T cell receptor complexes revealed by conformational mutants of CD3ε,” Science Signaling, vol. 2, no. 83, article ra43, 2009. View at Publisher · View at Google Scholar
  40. G. Ryan, “T cell signalling: CD3 conformation is crucial for signalling,” Nature Reviews Immunology, vol. 10, no. 1, p. 7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Blanco, A. Borroto, W. Schamel, P. Pereira, and B. Alarcon, “Conformational changes in the T cell receptor differentially determine T cell subset development in mice,” Science Signaling, vol. 7, no. 354, Article ID ra115, 2014. View at Publisher · View at Google Scholar · View at Scopus
  42. A. A. Petruk, S. Varriale, M. R. Coscia, L. Mazzarella, A. Merlino, and U. Oreste, “The structure of the CD3 ζζ transmembrane dimer in POPC and raft-like lipid bilayer: a molecular dynamics study,” Biochimica et Biophysica Acta (BBA)—Biomembranes, vol. 1828, no. 11, pp. 2637–2645, 2013. View at Publisher · View at Google Scholar · View at Scopus
  43. W. Humphrey, A. Dalke, and K. Schulten, “VMD: visual molecular dynamics,” Journal of Molecular Graphics, vol. 14, no. 1, pp. 33–38, 1996. View at Publisher · View at Google Scholar · View at Scopus
  44. M. L. Connolly, “Analytical molecular surface calculation,” Journal of Applied Crystallography, vol. 16, no. 5, pp. 548–558, 1983. View at Publisher · View at Google Scholar
  45. W. Schreiner, R. Karch, B. Knapp, and N. Ilieva, “Relaxation estimation of RMSD in molecular dynamics immunosimulations,” Computational and Mathematical Methods in Medicine, vol. 2012, Article ID 173521, 9 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus