Table of Contents Author Guidelines Submit a Manuscript
Journal of Immunology Research
Volume 2016 (2016), Article ID 5134329, 8 pages
http://dx.doi.org/10.1155/2016/5134329
Review Article

Dendritic Cells under Hypoxia: How Oxygen Shortage Affects the Linkage between Innate and Adaptive Immunity

Institut für Physiologie, Universität Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany

Received 9 November 2015; Revised 7 January 2016; Accepted 13 January 2016

Academic Editor: Silvia Beatriz Boscardin

Copyright © 2016 Sandra Winning and Joachim Fandrey. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. M. Steinman, “Decisions about dendritic cells: past, present, and future,” Annual Review of Immunology, vol. 30, pp. 1–22, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. R. M. Steinman and J. Banchereau, “Taking dendritic cells into medicine,” Nature, vol. 449, no. 7161, pp. 419–426, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Moser and K. M. Murphy, “Dendritic cell regulation of TH1-TH2 development,” Nature Immunology, vol. 1, no. 3, pp. 199–205, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Krishnamoorthy, T. Oriss, M. Paglia, A. Ray, and P. Ray, “A critical role for IL-6 secretion by dendritic cells promoting Th2 and limiting Th1 response,” The Journal of Immunology, vol. 178, p. S181, 2007. View at Google Scholar
  5. J. M. M. den Haan, G. Kraal, and M. J. Bevan, “Cutting edge: lipopolysaccharide induces IL-10-producing regulatory CD4+ T cells that suppress the CD8+ T cell response,” The Journal of Immunology, vol. 178, no. 9, pp. 5429–5433, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. K. N. Couper, D. G. Blount, and E. M. Riley, “IL-10: the master regulator of immunity to infection,” Journal of Immunology, vol. 180, no. 9, pp. 5771–5777, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. M. J. Benson, K. Pino-Lagos, M. Rosemblatt, and R. J. Noelle, “All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation,” The Journal of Experimental Medicine, vol. 204, no. 8, pp. 1765–1774, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Ohta, R. Diwanji, R. Kini, M. Subramanian, A. Ohta, and M. Sitkovsky, “In vivo T cell activation in lymphoid tissues is inhibited in the oxygen-poor microenvironment,” Frontiers in Immunology, vol. 2, article 27, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. G. L. Wang, B.-H. Jiang, E. A. Rue, and G. L. Semenza, “Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 12, pp. 5510–5514, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. R. H. Wenger, “Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression,” The FASEB Journal, vol. 16, no. 10, pp. 1151–1162, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. V. Nizet and R. S. Johnson, “Interdependence of hypoxic and innate immune responses,” Nature Reviews Immunology, vol. 9, no. 9, pp. 609–617, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Frede, C. Stockmann, P. Freitag, and J. Fandrey, “Bacterial lipopolysaccharide induces HIF-1 activation in human monocytes via p44/42 MAPK and NF-κB,” Biochemical Journal, vol. 396, no. 3, pp. 517–527, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Bonello, C. Zähringer, R. S. BelAiba et al., “Reactive oxygen species activate the HIF-1α promoter via a functional NFκB site,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 4, pp. 755–761, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Rius, M. Guma, C. Schachtrup et al., “NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α,” Nature, vol. 453, no. 7196, pp. 807–811, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. P. van Uden, N. S. Kenneth, and S. Rocha, “Regulation of hypoxia-inducible factor-1α by NF-κB,” Biochemical Journal, vol. 412, no. 3, pp. 477–484, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. G. M. Tannahill, A. M. Curtis, J. Adamik et al., “Succinate is an inflammatory signal that induces IL-1β through HIF-1α,” Nature, vol. 496, no. 7444, pp. 238–242, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. J. E. Albina, B. Mastrofrancesco, J. A. Vessella, C. A. Louis, W. L. Henry Jr., and J. S. Reichner, “HIF-1 expression in healing wounds: HIF-1α induction in primary inflammatory cells by TNF-α,” The American Journal of Physiology—Cell Physiology, vol. 281, no. 6, pp. C1971–C1977, 2001. View at Google Scholar · View at Scopus
  18. H. Niecknig, S. Tug, B. D. Reyes, M. Kirsch, J. Fandrey, and U. Berchner-Pfannschmidt, “Role of reactive oxygen species in the regulation of HIF-1 by prolyl hydroxylase 2 under mild hypoxia,” Free Radical Research, vol. 46, no. 6, pp. 705–717, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Zhou, N. Dehne, and B. Brüne, “Nitric oxide causes macrophage migration via the HIF-1-stimulated small GTPases Cdc42 and Rac1,” Free Radical Biology and Medicine, vol. 47, no. 6, pp. 741–749, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Z. Imtiyaz, E. P. Williams, M. M. Hickey et al., “Hypoxia-inducible factor 2alpha regulates macrophage function in mouse models of acute and tumor inflammation,” The Journal of Clinical Investigation, vol. 120, no. 8, pp. 2699–2714, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. I. Filippi, E. Morena, C. Aldinucci, F. Carraro, S. Sozzani, and A. Naldini, “Short-Term hypoxia enhances the migratory capability of dendritic cell through HIF-1α and PI3K/Akt pathway,” Journal of Cellular Physiology, vol. 229, no. 12, pp. 2067–2076, 2014. View at Publisher · View at Google Scholar · View at Scopus
  22. S. L. Deshmane, R. Mukerjee, S. Fan et al., “Activation of the oxidative stress pathway by HIV-1 Vpr leads to induction of hypoxia-inducible factor 1α expression,” The Journal of Biological Chemistry, vol. 284, no. 17, pp. 11364–11373, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. Y.-G. Yoo, S. H. Oh, E. S. Park et al., “Hepatitis B virus X protein enhances transcriptional activity of hypoxia-inducible factor-1α through activation of mitogen-activated protein kinase pathway,” The Journal of Biological Chemistry, vol. 278, no. 40, pp. 39076–39084, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. Q.-L. Cai, J. S. Knight, S. C. Verma, P. Zald, and E. S. Robertson, “EC5S ubiquitin complex is recruited by KSHV latent antigen LANA for degradation of the VHL and p53 tumor suppressors,” PLoS Pathogens, vol. 2, no. 10, article e116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Kondo, S. Y. Seo, T. Yoshizaki et al., “EBV latent membrane protein 1 up-regulates hypoxia-inducible factor 1α through Siah1-mediated down-regulation of prolyl hydroxylases 1 and 3 in nasopharyngeal epithelial cells,” Cancer Research, vol. 66, no. 20, pp. 9870–9877, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Haque, D. A. Davis, V. Wang, I. Widmer, and R. Yarchoan, “Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) contains hypoxia response elements: relevance to lytic induction by hypoxia,” Journal of Virology, vol. 77, no. 12, pp. 6761–6768, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Banchereau and R. M. Steinman, “Dendritic cells and the control of immunity,” Nature, vol. 392, no. 6673, pp. 245–252, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. A. R. Elia, P. Cappello, M. Puppo et al., “Human dendritic cells differentiated in hypoxia down-modulate antigen uptake and change their chemokine expression profile,” Journal of Leukocyte Biology, vol. 84, no. 6, pp. 1472–1482, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Ricciardi, A. R. Elia, P. Cappello et al., “Transcriptome of hypoxic immature dendritic cells: modulation of chemokine/receptor expression,” Molecular Cancer Research, vol. 6, no. 2, pp. 175–185, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Ogino, H. Onishi, H. Suzuki, T. Morisaki, M. Tanaka, and M. Katano, “Inclusive estimation of complex antigen presentation functions of monocyte-derived dendritic cells differentiated under normoxia and hypoxia conditions,” Cancer Immunology, Immunotherapy, vol. 61, no. 3, pp. 409–424, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Spirig, S. Djafarzadeh, T. Regueira et al., “Effects of TLR agonists on the hypoxia-regulated transcription factor HIF-1α and dendritic cell maturation under normoxic conditions,” PLoS ONE, vol. 5, no. 6, Article ID e10983, 12 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. I. Rama, B. Bruene, J. Torras et al., “Hypoxia stimulus: an adaptive immune response during dendritic cell maturation,” Kidney International, vol. 73, no. 7, pp. 816–825, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. M. C. Bosco, M. Puppo, F. Blengio et al., “Monocytes and dendritic cells in a hypoxic environment: spotlights on chemotaxis and migration,” Immunobiology, vol. 213, no. 9-10, pp. 733–749, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Blengio, F. Raggi, D. Pierobon et al., “The hypoxic environment reprograms the cytokine/chemokine expression profile of human mature dendritic cells,” Immunobiology, vol. 218, no. 1, pp. 76–89, 2013. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Yang, C. Ma, S. Liu et al., “HIF-dependent induction of adenosine receptor A2b skews human dendritic cells to a Th2-stimulating phenotype under hypoxia,” Immunology and Cell Biology, vol. 88, no. 2, pp. 165–171, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. M. C. Bosco, D. Pierobon, F. Blengio et al., “Hypoxia modulates the gene expression profile of immunoregulatory receptors in human mature dendritic cells: identification of TREM-1 as a novel hypoxic marker in vitro and in vivo,” Blood, vol. 117, no. 9, pp. 2625–2639, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Pierobon, M. C. Bosco, F. Blengio et al., “Chronic hypoxia reprograms human immature dendritic cells by inducing a proinflammatory phenotype and TREM-1 expression,” European Journal of Immunology, vol. 43, no. 4, pp. 949–966, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. M. C. Bosco and L. Varesio, “Dendritic cell reprogramming by the hypoxic environment,” Immunobiology, vol. 217, no. 12, pp. 1241–1249, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. S. K. Jung, J. H. Kim, H. J. Kim, Y. H. Ji, J. H. Kim, and S. W. Son, “Silver nanoparticle-induced hMSC proliferation is associated with HIF-1α-mediated upregulation of IL-8 expression,” Journal of Investigative Dermatology, vol. 134, no. 12, pp. 3003–3007, 2014. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Zhu, Y. Tang, N. Geng et al., “Hif-α/MIF and NF-κB/IL-6 axes contribute to the recruitment of CD11b+Gr-1+ myeloid cells in hypoxic microenvironment of HNSCC,” Neoplasia, vol. 16, no. 2, pp. 168–179, 2014. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Jantsch, D. Chakravortty, N. Turza et al., “Hypoxia and hypoxia-inducible factor-1α modulate lipopolysaccharide-induced dendritic cell activation and function,” The Journal of Immunology, vol. 180, no. 7, pp. 4697–4705, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Köhler, B. Reizis, R. S. Johnson, H. Weighardt, and I. Förster, “Influence of hypoxia-inducible factor 1α on dendritic cell differentiation and migration,” European Journal of Immunology, vol. 42, no. 5, pp. 1226–1236, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Jantsch, M. Wiese, J. Schödel et al., “Toll-like receptor activation and hypoxia use distinct signaling pathways to stabilize hypoxia-inducible factor 1α (HIF1A) and result in differential HIF1A-dependent gene expression,” Journal of Leukocyte Biology, vol. 90, no. 3, pp. 551–562, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Wobben, Y. Hüsecken, C. Lodewick, K. Gibbert, J. Fandrey, and S. Winning, “Role of hypoxia inducible factor-1α for interferon synthesis in mouse dendritic cells,” Biological Chemistry, vol. 394, no. 4, pp. 495–505, 2013. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Weigert, B. Weichand, D. Sekar et al., “HIF-1α is a negative regulator of plasmacytoid DC development in vitro and in vivo,” Blood, vol. 120, no. 15, pp. 3001–3006, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Bhandari, J. Olson, R. S. Johnson, and V. Nizet, “HIF-1α influences myeloid cell antigen presentation and response to subcutaneous OVA vaccination,” Journal of Molecular Medicine, vol. 91, no. 10, pp. 1199–1205, 2013. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Hammami, T. Charpentier, M. Smans, S. Stäger, and E. Y. Denkers, “IRF-5-mediated inflammation limits CD8+ T cell expansion by inducing HIF-1α and impairing dendritic cell functions during leishmania infection,” PLoS Pathogens, vol. 11, no. 6, Article ID e1004938, 2015. View at Publisher · View at Google Scholar
  48. K. Flück, G. Breves, J. Fandrey, and S. Winning, “Hypoxia-inducible factor 1 in dendritic cells is crucial for the activation of protective regulatory T cells in murine colitis,” Mucosal Immunology, 2015. View at Publisher · View at Google Scholar