Table of Contents Author Guidelines Submit a Manuscript
Journal of Immunology Research
Volume 2016, Article ID 9703914, 2 pages
http://dx.doi.org/10.1155/2016/9703914
Editorial

RNA Vaccination Therapy: Advances in an Emerging Field

1TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, 55131 Mainz, Germany
2Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
3Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
4Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
5Laboratory of Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
6Avidity NanoMedicines, La Jolla, CA 92037, USA

Received 27 January 2016; Accepted 28 January 2016

Copyright © 2016 Sebastian Kreiter et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Wolff, R. W. Malone, P. Williams et al., “Direct gene transfer into mouse muscle in vivo,” Science, vol. 247, no. 4949, pp. 1465–1468, 1990. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Martinon, S. Krishnan, G. Lenzen et al., “Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA,” European Journal of Immunology, vol. 23, no. 7, pp. 1719–1722, 1993. View at Publisher · View at Google Scholar · View at Scopus
  3. R. M. Conry, A. F. LoBuglio, M. Wright et al., “Characterization of a messenger RNA polynucleotide vaccine vector,” Cancer Research, vol. 55, no. 7, pp. 1397–1400, 1995. View at Google Scholar · View at Scopus
  4. D. Boczkowski, S. K. Nair, D. Snyder, and E. Gilboa, “Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo,” The Journal of Experimental Medicine, vol. 184, no. 2, pp. 465–472, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Bonehill, A. M. T. Van Nuffel, J. Corthals et al., “Single-step antigen loading and activation of dendritic cells by mRNA electroporation for the purpose of therapeutic vaccination in melanoma patients,” Clinical Cancer Research, vol. 15, no. 10, pp. 3366–3375, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Benteyn, C. Heirman, A. Bonehill, K. Thielemans, and K. Breckpot, “mRNA-based dendritic cell vaccines,” Expert Review of Vaccines, vol. 14, no. 2, pp. 161–176, 2015. View at Publisher · View at Google Scholar · View at Scopus
  7. I. Hoerr, R. Obst, H.-G. Rammensee, and G. Jung, “In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies,” European Journal of Immunology, vol. 30, no. 1, pp. 1–7, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Weide, J.-P. Carralot, A. Reese et al., “Results of the first phase I/II clinical vaccination trial with direct injection of mRNA,” Journal of Immunotherapy, vol. 31, no. 2, pp. 180–188, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Weide, S. Pascolo, B. Scheel et al., “Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients,” Journal of Immunotherapy, vol. 32, no. 5, pp. 498–507, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S. M. Rittig, M. Haentschel, K. J. Weimer et al., “Intradermal vaccinations with RNA coding for TAA generate CD8+ and CD4+ immune responses and induce clinical benefit in vaccinated patients,” Molecular Therapy, vol. 19, no. 5, pp. 990–999, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. J. C. Castle, S. Kreiter, J. Diekmann et al., “Exploiting the mutanome for tumor vaccination,” Cancer Research, vol. 72, no. 5, pp. 1081–1091, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Kreiter, M. Vormehr, N. van de Roemer et al., “Mutant MHC class II epitopes drive therapeutic immune responses to cancer,” Nature, vol. 520, no. 7549, pp. 692–696, 2015. View at Publisher · View at Google Scholar
  13. B. Petsch, M. Schnee, A. B. Vogel et al., “Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection,” Nature Biotechnology, vol. 30, no. 12, pp. 1210–1216, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Brazzoli, D. Magini, A. Bonci et al., “Induction of broad-based immunity and protective efficacy by self-amplifying mRNA vaccines encoding influenza virus hemagglutinin,” Journal of Virology, vol. 90, no. 1, pp. 332–344, 2015. View at Publisher · View at Google Scholar
  15. R. Weiss, S. Scheiblhofer, E. Roesler, E. Weinberger, and J. Thalhamer, “MRNA vaccination as a safe approach for specific protection from type I allergy,” Expert Review of Vaccines, vol. 11, no. 1, pp. 55–67, 2012. View at Publisher · View at Google Scholar · View at Scopus