Table of Contents Author Guidelines Submit a Manuscript
Journal of Immunology Research
Volume 2017 (2017), Article ID 2412747, 8 pages
https://doi.org/10.1155/2017/2412747
Research Article

Evolution of the Immune Response against Recombinant Proteins (TcpA, TcpB, and FlaA) as a Candidate Subunit Cholera Vaccine

1Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
2Molecular and Medicine Research Center, Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran

Correspondence should be addressed to Hamid Abtahi

Received 24 July 2016; Revised 23 October 2016; Accepted 21 December 2016; Published 16 January 2017

Academic Editor: Sergey Morzunov

Copyright © 2017 Neda Molaee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Satcher, “Emerging infections: getting ahead of the curve,” Emerging Infectious Diseases, vol. 1, no. 1, pp. 1–6, 1995. View at Publisher · View at Google Scholar · View at Scopus
  2. J. B. Kaper, J. G. Morris Jr., and M. M. Levine, “Cholera,” Clinical Microbiology Reviews, vol. 8, no. 1, pp. 48–86, 1995. View at Google Scholar · View at Scopus
  3. M. J. Albert, M. Ansaruzzaman, P. K. Bardhan et al., “Large epidemic of cholera-like disease in Bangladesh caused by Vibrio cholerae 0139 synonym Bengal,” The Lancet, vol. 342, no. 8868, pp. 387–390, 1993. View at Publisher · View at Google Scholar · View at Scopus
  4. A. L. Lopez, M. L. Gonzales, J. G. Aldaba, and G. B. Nair, “Killed oral cholera vaccines: history, development and implementation challenges,” Therapeutic Advances in Vaccines, vol. 2, no. 5, pp. 123–136, 2014. View at Publisher · View at Google Scholar
  5. H. Abtahi, A. H. Salmanian, S. Rafati, G. B. Nejad, and Z. M. Hassan, “High level expression of recombinant ribosomal protein (L7/L12) from Brucella abortus and its reaction with infected human sera,” Iranian Biomedical Journal, vol. 8, no. 1, pp. 13–18, 2004. View at Google Scholar · View at Scopus
  6. T. P. Hopp and K. R. Woods, “Prediction of protein antigenic determinants from amino acid sequences,” Proceedings of the National Academy of Sciences of the United States of America, vol. 78, no. 6, pp. 3824–3828, 1981. View at Publisher · View at Google Scholar · View at Scopus
  7. J. E. Rollenhagen, A. Kalsy, F. Cerda et al., “Transcutaneous immunization with toxin-coregulated pilin A induces protective immunity against Vibrio cholerae O1 El Tor challenge in mice,” Infection and Immunity, vol. 74, no. 10, pp. 5834–5839, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Sarkar and K. Chaudhuri, “Association of adherence and motility in interleukin 8 induction in human intestinal epithelial cells by Vibrio cholerae,” Microbes and Infection, vol. 6, no. 7, pp. 676–685, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Jonson, J. Holmgren, and A.-M. Svennerholm, “Epitope differences in toxin-coregulated pili produced by classical and El Tor Vibrio cholerae O1,” Microbial Pathogenesis, vol. 11, no. 3, pp. 179–188, 1991. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Molaee, H. Abtahi, and G. Mosayebi, “Expression of recombinant streptokinase from streptococcus pyogenes and its reaction with infected human and murine sera,” Iranian Journal of Basic Medical Sciences, vol. 16, no. 9, pp. 985–989, 2013. View at Google Scholar · View at Scopus
  11. L. Farhangnia, E. Ghaznavi-Rad, N. Mollaee, and H. Abtahi, “Cloning, expression, and purification of recombinant Lysostaphin from Staphylococcus simulans,” Jundishapur Journal of Microbiology, vol. 7, no. 5, Article ID e10009, 2014. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Mahmoudi, H. Abtahi, A. Bahador, G. Mosayebi, and A. Salmanian, “Production of recombinant streptokinase in E. coli and reactivity with immunized mice,” Pakistan Journal of Biological Sciences, vol. 13, no. 8, pp. 380–384, 2010. View at Publisher · View at Google Scholar
  13. S. Joseph and W. R. David, Molecular Cloning a Laboratory Manual, Gold Spring Harbor, New York, NY, USA, 2001.
  14. L. Hasanzadeh, E. Ghaznavi-Rad, S. Soufian, V. Farjadi, and H. Abtahi, “Expression and antigenic evaluation of VacA antigenic fragment of Helicobacter pylori,” Iranian Journal of Basic Medical Sciences, vol. 16, no. 7, pp. 835–840, 2013. View at Google Scholar · View at Scopus
  15. D. I. Bounous, R. P. Campagnoli, and J. Brown, “Comparison of MTT colorimetric assay and tritiated thymidine uptake for lymphocyte proliferation assays using chicken splenocytes,” Avian Diseases, vol. 36, no. 4, pp. 1022–1027, 1992. View at Publisher · View at Google Scholar · View at Scopus
  16. M. D. Meeks, T. K. Wade, R. K. Taylor, and W. F. Wade, “Immune response genes modulate serologic responses to Vibrio cholerae TcpA pilin peptides,” Infection and Immunity, vol. 69, no. 12, pp. 7687–7694, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. D. R. Leitner, S. Lichtenegger, P. Temel et al., “A combined vaccine approach against Vibrio cholerae and ETEC based on outer membrane vesicles,” Frontiers in Microbiology, vol. 6, article 823, 2015. View at Publisher · View at Google Scholar · View at Scopus
  18. D. A. Herrington, R. H. Hall, G. Losonsky, J. J. Mekalanos, R. K. Taylor, and M. M. Levine, “Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans,” Journal of Experimental Medicine, vol. 168, no. 4, pp. 1487–1492, 1988. View at Publisher · View at Google Scholar · View at Scopus
  19. M. S. Strom and S. Lory, “Structure-function and biogenesis of the type IV pili,” Annual Review of Microbiology, vol. 47, no. 1, pp. 565–596, 1993. View at Publisher · View at Google Scholar · View at Scopus
  20. J.-Y. Wu, R. K. Taylor, and W. F. Wade, “Anti-class II monoclonal antibody-targetedvibrio cholerae TcpA pilin: modulation of serologic response, epitope specificity, and isotype,” Infection and Immunity, vol. 69, no. 12, pp. 7679–7686, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Kiaie, H. Abtahi, G. Mosayebi, M. Alikhani, and I. Pakzad, “Recombinant toxin-coregulated pilus A (TcpA) as a candidate subunit cholera vaccine,” Iranian Journal of Microbiology, vol. 6, no. 2, pp. 68–73, 2014. View at Google Scholar · View at Scopus
  22. H. Rui, J. M. Ritchie, R. T. Bronson, J. J. Mekalanos, Y. Zhang, and M. K. Waldor, “Reactogenicity of live-attenuated Vibrio cholerae vaccines is dependent on flagellins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 9, pp. 4359–4364, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. K. W. Hranitzky, A. Mulholland, A. D. Larson, E. R. Eubanks, and L. T. Hart, “Characterization of a flagellar sheath protein of Vibrio cholerae,” Infection and Immunity, vol. 27, no. 2, pp. 597–603, 1980. View at Google Scholar · View at Scopus
  24. R. M. Martinez, M. N. Dharmasena, T. J. Kirn, and R. K. Taylor, “Characterization of two outer membrane proteins, FlgO and FlgP, that influence Vibrio cholerae motility,” Journal of Bacteriology, vol. 191, no. 18, pp. 5669–5679, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Y. Sang and J. J. Mekalanos, “Decreased potency of the Vibrio cholerae sheathed flagellum to trigger host innate immunity,” Infection and Immunity, vol. 76, no. 3, pp. 1282–1288, 2008. View at Publisher · View at Google Scholar · View at Scopus