Table of Contents Author Guidelines Submit a Manuscript
Journal of Immunology Research
Volume 2017, Article ID 3780697, 13 pages
https://doi.org/10.1155/2017/3780697
Review Article

Bacteriophages and Their Immunological Applications against Infectious Threats

1Microbiology and Virology Unit, Vita-Salute San Raffaele University, Milan, Italy
2Vita-Salute San Raffaele University, Milan, Italy
3Neurobiology of Learning Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
4Laboratory of Microbiology and Virology, San Raffaele Hospital, Milan, Italy

Correspondence should be addressed to Elena Criscuolo; ti.rsh@anele.oloucsirc

Received 4 November 2016; Accepted 19 March 2017; Published 18 April 2017

Academic Editor: Kurt Blaser

Copyright © 2017 Elena Criscuolo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. E. Wommack, R. T. Hill, M. Kessel, E. Russek-Cohen, and R. R. Colwell, “Distribution of viruses in the Chesapeake Bay,” Applied and Environmental Microbiology, vol. 58, no. 9, pp. 2965–2970, 1992. View at Google Scholar
  2. F. D'Herelle, F. W. Twort, J. Bordet, and A. Gratia, “Discussion on the bacteriophage (bacteriolysin),” BMJ, vol. 2, pp. 289–299, 1922. View at Google Scholar
  3. F. Twort, “The discovery of the ‘bacteriophage’,” The Lancet, vol. 205, no. 5303, p. 845, 1925. View at Publisher · View at Google Scholar
  4. D. H. Duckworth, “Who discovered bacteriophage?” Bacteriological Reviews, vol. 40, no. 4, pp. 793–802, 1976. View at Publisher · View at Google Scholar
  5. S. Giguère, J. F. Prescott, and P. M. Dowling, Antimicrobial Therapy in Veterinary Medicine, John Wiley & Sons, Hoboken, NJ, USA, 2013.
  6. K. A. Henry, M. Arbabi-Ghahroudi, and J. K. Scott, “Beyond phage display: non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold,” Frontiers in Microbiology, vol. 6, no. 755, pp. 1629–1618, 2015. View at Google Scholar
  7. P. H. Hofschneider and K. Mueller-Jensen, “Über infektiöse Substrukturen aus E. coli-Bakteriophagen,” Zeitschrift für Naturforschung Part B, vol. 18, no. 11, pp. 922–927, 1963. View at Google Scholar
  8. D. A. Marvin and H. Hoffmann-Berling, “A fibrous DNA phage (fd) and a spherical RNA phage (fr) specific for male strains of E coli,” Zeitschrift für Naturforschung Part B, vol. 18, no. 11, pp. 884–893, 1963. View at Publisher · View at Google Scholar · View at Scopus
  9. N. D. Zinder, R. C. Valentine, M. Roger, and W. Stoeckenius, “F1, a rod-shaped male-specific bacteriophage that contains DNA,” Virology, vol. 20, no. 4, pp. 638–640, 1963. View at Publisher · View at Google Scholar
  10. W. O. Salivar, H. Tzagoloff, and D. Pratt, “Some physical-chemical and biological properties of the rod-shaped coliphage M13,” Virology, vol. 24, no. 3, pp. 359–371, 1964. View at Publisher · View at Google Scholar
  11. C. M. Fauquet and D. Fargette, “International Committee on Taxonomy of Viruses and the 3, 142 unassigned species,” Virology Journal, vol. 2, no. 1, p. 64, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Danner and J. G. Belasco, “T7 phage display: a novel genetic selection system for cloning RNA-binding proteins from cDNA libraries,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 23, pp. 12954–12959, 2001. View at Google Scholar
  13. N. Chanishvili, “Phage therapy—history from Twort and d’Herelle through Soviet experience to current approaches,” Advances in Virus Research, vol. 83, pp. 3–40, 2012. View at Google Scholar
  14. W. C. Summers, “Bacteriophage therapy,” Annual Review of Microbiology, vol. 55, no. 3, pp. 437–451, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Bruynoghe and J. Maisin, “Essais de thérapeutique au moyen du bacteriophage,” CR Society of Biology, vol. 85, pp. 1120–1121, 1921. View at Google Scholar
  16. S. E. Luria, M. Delbrück, and T. F. Anderson, “Electron microscope studies of bacterial viruses,” Journal of Bacteriology, vol. 46, no. 1, pp. 57–77, 1943. View at Google Scholar
  17. S. E. Luria and M. Delbrück, “Mutations of bacteria from virus sensitivity to virus resistance,” Genetics, vol. 28, no. 6, pp. 491–511, 1943. View at Google Scholar
  18. C. L. Ventola, “The antibiotic resistance crisis: part 1: causes and threats,” P t., vol. 40, no. 4, pp. 277–283, 2015. View at Google Scholar
  19. J. R. Clark and J. B. March, “Bacterial viruses as human vaccines?” Expert Review of Vaccines, vol. 3, no. 4, pp. 463–476, 2004. View at Google Scholar
  20. N. Clementi, E. Criscuolo, M. Castelli, and M. Clementi, “Broad-range neutralizing anti-influenza A human monoclonal antibodies: new perspectives in therapy and prophylaxis,” The new Microbiologica, vol. 35, no. 4, pp. 399–406, 2012. View at Google Scholar
  21. T. Menéndez, N. F. Santiago-Vispo, Y. Cruz-Leal et al., “Identification and characterization of phage-displayed peptide mimetics of Neisseria meningitidis serogroup B capsular polysaccharide,” International Journal of Medical Microbiology, vol. 301, no. 1, pp. 16–25, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Sautto, N. Mancini, R. A. Diotti, L. Solforosi, M. Clementi, and R. Burioni, “Anti-hepatitis C virus E2 (HCV/E2) glycoprotein monoclonal antibodies and neutralization interference,” Antiviral Research, vol. 96, no. 1, pp. 82–89, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. H. M. Mir, A. Birerdinc, and Z. M. Younossi, “Monoclonal and polyclonal antibodies against the HCV envelope proteins,” Clinics in Liver Disease, vol. 13, no. 3, pp. 477–486, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. R. A. Diotti, N. Mancini, N. Clementi et al., “Cloning of the first human anti-JCPyV/VP1 neutralizing monoclonal antibody: epitope definition and implications in risk stratification of patients under natalizumab therapy,” Antiviral Research, vol. 108, no. 1, pp. 94–103, 2014. View at Google Scholar
  25. R. A. Williamson, R. Burioni, P. P. Sanna, L. J. Partridge, C. F. Barbas, and D. R. Burton, “Human monoclonal antibodies against a plethora of viral pathogens from single combinatorial libraries,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 9, pp. 4141–4145, 1993. View at Google Scholar
  26. J. Thompson, T. Pope, J. S. Tung et al., “Affinity maturation of a high-affinity human monoclonal antibody against the third hypervariable loop of human immunodeficiency virus: use of phage display to improve affinity and broaden strain reactivity,” Journal of Molecular Biology, vol. 256, no. 1, pp. 77–88, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Cao, Y. Sun, T. Berglindh et al., “Helicobacter pylori-antigen-binding fragments expressed on the filamentous M13 phage prevent bacterial growth,” Biochimica et Biophysica Acta, vol. 1474, no. 1, pp. 107–113, 2000. View at Google Scholar
  28. R. Burioni, R. A. Williamson, P. P. Sanna, F. E. Bloom, and D. R. Burton, “Recombinant human Fab to glycoprotein D neutralizes infectivity and prevents cell-to-cell transmission of herpes simplex viruses 1 and 2 in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 1, pp. 355–359, 1994. View at Google Scholar
  29. C. C. Lee, L. L. Lin, W. E. Chan, T.-P. Ko, J. S. Lai, and A. H. J. Wang, “Structural basis for the antibody neutralization of Herpes simplex virus,” Acta Crystallographica. Section D, Biological Crystallography, vol. 69, no. Part 10, pp. 1935–1945, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. E. A. Lindquist, J. D. Marks, B. J. Kleba, and R. S. Stephens, “Phage-display antibody detection of Chlamydia trachomatis-associated antigens,” Microbiology, vol. 148, no. Part 2, pp. 443–451, 2002. View at Publisher · View at Google Scholar
  31. G. C. Paoli, C.Y. Chen, and J. D. Brewster, “Single-chain Fv antibody with specificity for Listeria monocytogenes,” Journal of Immunological Methods, vol. 289, no. 1-2, pp. 147–155, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Zhu, B. Ho, and J. L. Ding, “Sequence and structural diversity in endotoxin-binding dodecapeptides,” Biochimica et Biophysica Acta, vol. 1611, no. 1-2, pp. 234–242, 2003. View at Google Scholar
  33. X.L. Zhao, J. Yin, W.Q. Chen, M. Jiang, G. Yang, and Z.H. Yang, “Generation and characterization of human monoclonal antibodies to G5, a linear neutralization epitope on glycoprotein of rabies virus, by phage display technology,” Microbiology and Immunology, vol. 52, no. 2, pp. 89–93, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. N. Sabarth, R. Hurvitz, M. Schmidt et al., “Identification of helicobacter pylori surface proteins by selective proteinase K digestion and antibody phage display,” Journal of Microbiological Methods, vol. 62, no. 3, pp. 345–349, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Wu, D. S. Pfarr, S. Johnson et al., “Development of motavizumab, an ultra-potent antibody for the prevention of respiratory syncytial virus infection in the upper and lower respiratory tract,” Journal of Molecular Biology, vol. 368, no. 3, pp. 652–665, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Ran, J. He, X. Huang, M. Soares, D. Scothorn, and P. E. Thorpe, “Antitumor effects of a monoclonal antibody that binds anionic phospholipids on the surface of tumor blood vessels in mice,” Clinical Cancer Research, vol. 11, no. 4, pp. 1551–1562, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. T.-S. Migone, G. M. Subramanian, J. Zhong et al., “Raxibacumab for the treatment of inhalational anthrax,” The New England Journal of Medicine, vol. 361, no. 2, pp. 135–144, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Odegrip, D. Coomber, B. Eldridge et al., “CIS display: in vitro selection of peptides from libraries of protein-DNA complexes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 9, pp. 2806–2810, 2004. View at Google Scholar
  39. J. Steel, “New strategies for the development of H5N1 subtype influenza vaccines: progress and challenges,” BioDrugs, vol. 25, no. 5, pp. 285–298, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Johnston, D. M. Koelle, and A. Wald, “HSV-2: in pursuit of a vaccine,” The Journal of Clinical Investigation, vol. 121, no. 12, pp. 4600–4609, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. J. R. Danko, C. G. Beckett, and K. R. Porter, “Development of dengue DNA vaccines,” Vaccine, vol. 29, no. 42, pp. 7261–7266, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. P. J. Klasse and Q. J. Sattentau, “Occupancy and mechanism in antibody-mediated neutralization of animal viruses,” The Journal of General Virology, vol. 83, no. Part 9, pp. 2091–2108, 2002. View at Publisher · View at Google Scholar
  43. R. Dulbecco, M. Vogt, and A. G. Strickland, “A study of the basic aspects of neutralization of two animal viruses, western equine encephalitis virus and poliomyelitis virus,” Virology, vol. 2, no. 2, pp. 162–205, 1956. View at Publisher · View at Google Scholar
  44. A. Takada and Y. Kawaoka, “Antibody-dependent enhancement of viral infection: molecular mechanisms and in vivo implications,” Reviews in Medical Virology, vol. 13, no. 6, pp. 387–398, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. J. P. O’Rourke, D. S. Peabody, and B. Chackerian, “Affinity selection of epitope-based vaccines using a bacteriophage virus-like particle platform,” Current Opinion in Virology, vol. 11, pp. 76–82, 2015. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Castelli, F. Cappelletti, R. A. Diotti et al., “Peptide-based vaccinology: experimental and computational approaches to target hypervariable viruses through the fine characterization of protective epitopes recognized by monoclonal antibodies and the identification of T-cell-activating peptides,” Clinical and Developmental Immunology, vol. 2013, Article ID 521231, pp. 1–12, 2013. View at Publisher · View at Google Scholar · View at Scopus
  47. P. Vukovic, K. Chen, X. Qin Liu et al., “Single-chain antibodies produced by phage display against the C-terminal 19 kDa region of merozoite surface protein-1 of Plasmodium yoelii reduce parasite growth following challenge,” Vaccine, vol. 20, no. 21-22, pp. 2826–2835, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. F. Bugli, N. Mancini, C. Y. Kang et al., “Mapping B-cell epitopes of hepatitis C virus E2 glycoprotein using human monoclonal antibodies from phage display libraries,” Journal of Virology, vol. 75, no. 20, pp. 9986–9990, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. H. Hashemi, T. Bamdad, A. Jamali, S. Pouyanfard, and M. G. Mohammadi, “Evaluation of humoral and cellular immune responses against HSV-1 using genetic immunization by filamentous phage particles: a comparative approach to conventional DNA vaccine,” Journal of Virological Methods, vol. 163, no. 2, pp. 440–444, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. L. Aghebati-Maleki, B. Bakhshinejad, B. Baradaran et al., “Phage display as a promising approach for vaccine development,” Journal of Biomedical Science, vol. 23, p. 66, 2016. View at Publisher · View at Google Scholar
  51. P. Tao, M. Mahalingam, M. L. Kirtley et al., “Mutated and bacteriophage T4 nanoparticle arrayed F1-V immunogens from Yersinia pestis as next generation plague vaccines,” PLoS Pathogens, vol. 9, no. 7, article e1003495, 2013. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Sathaliyawala, M. Rao, D. M. Maclean, D. L. Birx, C. R. Alving, and V. B. Rao, “Assembly of human immunodeficiency virus (HIV) antigens on bacteriophage T4: a novel in vitro approach to construct multicomponent HIV vaccines,” Journal of Virology, vol. 80, no. 15, pp. 7688–7698, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. H. Hashemi, S. Pouyanfard, M. Bandehpour et al., “Immunization with M2e-displaying T7 bacteriophage nanoparticles protects against influenza A virus challenge,” PloS One, vol. 7, no. 9, article e45765, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. J. R. Clark and J. B. March, “Bacteriophage-mediated nucleic acid immunisation,” FEMS Immunology and Medical Microbiology, vol. 40, no. 1, pp. 21–26, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. C. Ou, D. Tian, Y. Ling et al., “Evaluation of an ompA-based phage-mediated DNA vaccine against Chlamydia abortus in piglets,” International Immunopharmacology, vol. 16, no. 4, pp. 505–510, 2013. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Latz, A. Wahida, A. Arif et al., “Preliminary survey of local bacteriophages with lytic activity against multi-drug resistant bacteria,” Journal of Basic Microbiology, vol. 56, no. 10, pp. 1117–1123, 2016. View at Publisher · View at Google Scholar
  57. D. D. Rhoads, R. D. Wolcott, M. A. Kuskowski, B. M. Wolcott, L. S. Ward, and A. Sulakvelidze, “Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial,” Journal of Wound Care, vol. 18, no. 6, pp. 237–238, 2013, 2013 View at Google Scholar
  58. S. A. Sarker, S. Sultana, G. Reuteler et al., “Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh,” eBioMedicine, vol. 4, pp. 124–137, 2016. View at Google Scholar
  59. H. Oliveira, S. Sillankorva, M. Merabishvili, L. D. Kluskens, and J. Azeredo, “Unexploited opportunities for phage therapy,” Frontiers in Pharmacology, vol. 6, p. 180, 2015. View at Publisher · View at Google Scholar · View at Scopus
  60. A. S. Nilsson, “Phage therapy—constraints and possibilities,” Upsala Journal of Medical Sciences, vol. 119, no. 2, pp. 192–198, 2014. View at Publisher · View at Google Scholar · View at Scopus
  61. K. Hodyra-Stefaniak, P. Miernikiewicz, J. Drapała et al., “Mammalian host-versus-phage immune response determines phage fate in vivo,” Scientific Reports, vol. 5, article 14802, p. 14802, 2015. View at Publisher · View at Google Scholar · View at Scopus
  62. E. M. Ryan, S. P. Gorman, R. F. Donnelly, and B. F. Gilmore, “Recent advances in bacteriophage therapy: how delivery routes, formulation, concentration and timing influence the success of phage therapy,” The Journal of Pharmacy and Pharmacology, vol. 63, no. 10, pp. 1253–1264, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. Z. Drulis-Kawa, G. Majkowska-Skrobek, and B. Maciejewska, “Bacteriophages and phage-derived proteins—application approaches,” Current Medicinal Chemistry, vol. 22, no. 14, pp. 1757–1773, 2015. View at Publisher · View at Google Scholar
  64. H.-C. Flemming, J. Wingender, U. Szewzyk, P. Steinberg, S. A. Rice, and S. Kjelleberg, “Biofilms: an emergent form of bacterial life,” Nature Reviews. Microbiology, vol. 14, no. 9, pp. 563–575, 2016. View at Publisher · View at Google Scholar · View at Scopus
  65. T. Harada, “Special bacterial polysaccharides and polysaccharases,” Biochemical Society Symposium, vol. 48, pp. 97–116, 1983. View at Google Scholar
  66. R. Dubos and O. T. Avery, “Decomposition of the capsular polysaccharide of pneumococcus type III by a bacterial enzyme,” The Journal of Experimental Medicine, vol. 54, no. 1, pp. 51–71, 1931. View at Publisher · View at Google Scholar
  67. K. Goodner and R. Dubos, “Studies on the quantitative action of a specific enzyme in type III pneumococcus dermal infection in rabbits,” The Journal of Experimental Medicine, vol. 56, no. 4, pp. 521–530, 1932. View at Publisher · View at Google Scholar
  68. T. Francis, E. E. Terrell, R. Dubos, and O. T. Avery, “Experimental type III pneumococcus pneumonia in monkeys: II. Treatment with an enzyme which decomposes the specific capsular polysaccharide of pneumococcus type III,” The Journal of Experimental Medicine, vol. 59, no. 5, pp. 641–667, 1934. View at Google Scholar
  69. N. Mushtaq, M. B. Redpath, J. P. Luzio, and P. W. Taylor, “Treatment of experimental Escherichia coli infection with recombinant bacteriophage-derived capsule depolymerase,” The Journal of Antimicrobial Chemotherapy, vol. 56, no. 1, pp. 160–165, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Scorpio, D. J. Chabot, W. A. Day et al., “Poly-gamma-glutamate capsule-degrading enzyme treatment enhances phagocytosis and killing of encapsulated bacillus anthracis,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 1, pp. 215–222, 2007. View at Google Scholar
  71. A. Scorpio, S. A. Tobery, W. J. Ribot, and A. M. Friedlander, “Treatment of experimental anthrax with recombinant capsule depolymerase,” Antimicrobial Agents and Chemotherapy, vol. 52, no. 3, pp. 1014–1020, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. A. Zelmer, M. J. Martin, O. Gundogdu et al., “Administration of capsule-selective endosialidase E minimizes upregulation of organ gene expression induced by experimental systemic infection with Escherichia coli K1,” Microbiology, vol. 156, no. Part 7, pp. 2205–2215, 2010, (Reading, Engl.) View at Google Scholar
  73. P. M. Bales, E. M. Renke, S. L. May, Y. Shen, and D. C. Nelson, “Purification and characterization of biofilm-associated EPS exopolysaccharides from ESKAPE organisms and other pathogens,” PloS One, vol. 8, no. 6, article e67950, 2013. View at Publisher · View at Google Scholar · View at Scopus
  74. A. Cornelissen, P.-J. Ceyssens, J. T'Syen et al., “The T7-related Pseudomonas putida phage φ15 displays virion-associated biofilm degradation properties,” PloS One, vol. 6, no. 4, article e18597, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. V. Verma, K. Harjai, and S. Chhibber, “Structural changes induced by a lytic bacteriophage make ciprofloxacin effective against older biofilm of Klebsiella pneumoniae,” Biofouling, vol. 26, no. 6, pp. 729–737, 2010. View at Publisher · View at Google Scholar
  76. T. K. Lu and J. J. Collins, “Dispersing biofilms with engineered enzymatic bacteriophage,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 27, pp. 11197–11202, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. K. Tait, L. C. Skillman, and I. W. Sutherland, “The efficacy of bacteriophage as a method of biofilm eradication,” Biofouling, vol. 18, no. 4, pp. 305–311, 2010. View at Google Scholar
  78. G. W. Hanlon, S. P. Denyer, C. J. Olliff, and L. J. Ibrahim, “Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms,” Applied and Environmental Microbiology, vol. 67, no. 6, pp. 2746–2753, 2001. View at Publisher · View at Google Scholar · View at Scopus
  79. K. A. Hughes, I. W. Sutherland, and M. V. Jones, “Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase,” Microbiology, vol. 144, no. Part 11, pp. 3039–3047, 1998. View at Google Scholar
  80. L. C. Skillman, I. W. Sutherland, and M. V. Jones, “The role of exopolysaccharides in dual species biofilm development,” Journal of Applied Microbiology, vol. 85, Supplement 1, pp. 13S–18S, 1998. View at Google Scholar
  81. R. Young, “Phage lysis: three steps, three choices, one outcome,” Journal of Microbiology, vol. 52, no. 3, pp. 243–258, 2014. View at Publisher · View at Google Scholar · View at Scopus
  82. L. Zhang, D. Li, X. Li et al., “LysGH15 kills Staphylococcus aureus without being affected by the humoral immune response or inducing inflammation,” Scientific Reports, vol. 6, article 29344, 2016. View at Publisher · View at Google Scholar · View at Scopus
  83. V. A. Fischetti, “Bacteriophage lytic enzymes: novel anti-infectives,” Trends in Microbiology, vol. 13, no. 10, pp. 491–496, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. D. Nelson, L. Loomis, and V. A. Fischetti, “Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 7, pp. 4107–4112, 2001. View at Google Scholar
  85. Y. Briers and R. Lavigne, “Breaking barriers: expansion of the use of endolysins as novel antibacterials against Gram-negative bacteria,” Future Microbiology, vol. 10, pp. 377–390, 2015. View at Publisher · View at Google Scholar · View at Scopus
  86. Y. Yuan, Q. Peng, and M. Gao, “Characteristics of a broad lytic spectrum endolysin from phage BtCS33 of Bacillus thuringiensis,” BMC Microbiology, vol. 12, no. 1, p. 297, 2012, 2010 10:1 View at Publisher · View at Google Scholar
  87. D. R. Roach and D. M. Donovan, “Antimicrobial bacteriophage-derived proteins and therapeutic applications,” Bacteriophage., vol. 5, no. 3, article e1062590, 2015. View at Publisher · View at Google Scholar
  88. M. Schmelcher, D. M. Donovan, and M. J. Loessner, “Bacteriophage endolysins as novel antimicrobials,” Future Microbiology, vol. 7, no. 10, pp. 1147–1171, 2012. View at Publisher · View at Google Scholar · View at Scopus
  89. M. J. Loessner, K. Kramer, F. Ebel, and S. Scherer, “C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydrates,” Molecular Microbiology, vol. 44, no. 2, pp. 335–349, 2002. View at Publisher · View at Google Scholar · View at Scopus
  90. L. Callewaert, M. Walmagh, C. W. Michiels, and R. Lavigne, “Food applications of bacterial cell wall hydrolases,” Current Opinion in Biotechnology, vol. 22, no. 2, pp. 164–171, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. A. Merzlyak, Development and Characterization of Genetically Engineered M13 Bacteriophage as Tissue Engineering Materials, University of California, Berkeley with the University of California, San Francisco, CA, USA, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. M. Walmagh, B. Boczkowska, B. Grymonprez, Y. Briers, Z. Drulis-Kawa, and R. Lavigne, “Characterization of five novel endolysins from gram-negative infecting bacteriophages,” Applied Microbiology and Biotechnology, vol. 97, no. 10, pp. 4369–4375, 2013. View at Publisher · View at Google Scholar · View at Scopus
  93. P. Lukacik, T. J. Barnard, and S. K. Buchanan, “Using a bacteriocin structure to engineer a phage lysin that targets Yersinia pestis,” Biochemical Society Transactions, vol. 40, no. 6, pp. 1503–1506, 2012. View at Publisher · View at Google Scholar · View at Scopus
  94. Y. Briers, M. Walmagh, B. Grymonprez et al., “Art-175 is a highly efficient antibacterial against multidrug-resistant strains and persisters of Pseudomonas aeruginosa,” Antimicrobial Agents and Chemotherapy, vol. 58, no. 7, pp. 3774–3784, 2014. View at Publisher · View at Google Scholar · View at Scopus
  95. M. Walmagh, Y. Briers, and Santos, dos, S.B., Azeredo, J., Lavigne, R., “Characterization of modular bacteriophage endolysins from Myoviridae phages OBP, 201φ2-1 and PVP-SE1,” PloS One, vol. 7, no. 5, article e36991, 2012. View at Publisher · View at Google Scholar
  96. E. H. Freimer, R. M. Krause, and M. McCarty, “Studies of L forms and protoplasts of group A streptococci. I. Isolation, growth, and bacteriologic characteristics,” The Journal of Experimental Medicine, vol. 110, no. 6, pp. 853–874, 1959. View at Publisher · View at Google Scholar · View at Scopus
  97. R. Lood, B. Y. Winer, A. J. Pelzek et al., “Novel phage lysin capable of killing the multidrug-resistant gram-negative bacterium Acinetobacter baumannii in a mouse bacteremia model,” Antimicrobial Agents and Chemotherapy, vol. 59, no. 4, pp. 1983–1991, 2015. View at Publisher · View at Google Scholar · View at Scopus
  98. R. Schuch, D. Nelson, and V. A. Fischetti, “A bacteriolytic agent that detects and kills bacillus anthracis,” Nature, vol. 418, no. 6900, pp. 884–889, 2002. View at Publisher · View at Google Scholar · View at Scopus
  99. P. Yoong, R. Schuch, D. Nelson, and V. A. Fischetti, “PlyPH, a bacteriolytic enzyme with a broad pH range of activity and lytic action against Bacillus anthracis,” Journal of Bacteriology, vol. 188, no. 7, pp. 2711–2714, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. Y. Briers, M. Walmagh, V. Van Puyenbroeck et al., “Engineered endolysin-based “Artilysins” to combat multidrug-resistant gram-negative pathogens,” MBio, vol. 5, no. 4, e01379, p. 14, 2014. View at Publisher · View at Google Scholar · View at Scopus
  101. M. Rashel, J. Uchiyama, T. Ujihara et al., “Efficient elimination of multidrug-resistant Staphylococcus aureus by cloned lysin derived from bacteriophage phi MR11,” The Journal of Infectious Diseases, vol. 196, no. 8, pp. 1237–1247, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. A. Daniel, C. Euler, M. Collin, P. Chahales, K. J. Gorelick, and V. A. Fischetti, “Synergism between a novel chimeric lysin and oxacillin protects against infection by methicillin-resistant Staphylococcus aureus,” Antimicrobial Agents and Chemotherapy, vol. 54, no. 4, pp. 1603–1612, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. M. Pastagia, C. Euler, P. Chahales, J. Fuentes-Duculan, J. G. Krueger, and V. A. Fischetti, “A novel chimeric lysin shows superiority to mupirocin for skin decolonization of methicillin-resistant and -sensitive Staphylococcus aureus strains,” Antimicrobial Agents and Chemotherapy, vol. 55, no. 2, pp. 738–744, 2011. View at Publisher · View at Google Scholar · View at Scopus
  104. J. Gu, W. Xu, L. Lei et al., “LysGH15, a novel bacteriophage lysin, protects a murine bacteremia model efficiently against lethal methicillin-resistant Staphylococcus aureus infection,” Journal of Clinical Microbiology, vol. 49, no. 1, pp. 111–117, 2011. View at Google Scholar
  105. J. Gu, J. Zuo, L. Lei et al., “LysGH15 reduces the inflammation caused by lethal methicillin-resistant Staphylococcus aureus infection in mice,” Bioengineered Bugs, vol. 2, no. 2, pp. 96–99, 2011. View at Google Scholar
  106. D. B. Gilmer, J. E. Schmitz, C. W. Euler, and V. A. Fischetti, “Novel bacteriophage lysin with broad lytic activity protects against mixed infection by Streptococcus pyogenes and methicillin-resistant Staphylococcus aureus,” Antimicrobial Agents and Chemotherapy, vol. 57, no. 6, pp. 2743–2750, 2013. View at Publisher · View at Google Scholar · View at Scopus
  107. M. Schmelcher, A. M. Powell, S. C. Becker, M. J. Camp, and D. M. Donovan, “Chimeric phage lysins act synergistically with lysostaphin to kill mastitis-causing Staphylococcus aureus in murine mammary glands,” Applied and Environmental Microbiology, vol. 78, no. 7, pp. 2297–2305, 2012. View at Publisher · View at Google Scholar · View at Scopus
  108. M. Schmelcher, Y. Shen, D. C. Nelson et al., “Evolutionarily distinct bacteriophage endolysins featuring conserved peptidoglycan cleavage sites protect mice from MRSA infection,” The Journal of Antimicrobial Chemotherapy, vol. 70, no. 5, pp. 1453–1465, 2015. View at Publisher · View at Google Scholar · View at Scopus
  109. P. K. Singh, D. M. Donovan, and A. Kumar, “Intravitreal injection of the chimeric phage endolysin Ply187 protects mice from Staphylococcus aureus endophthalmitis,” Antimicrobial Agents and Chemotherapy, vol. 58, no. 8, pp. 4621–4629, 2014. View at Publisher · View at Google Scholar · View at Scopus
  110. S. Y. Jun, G. M. Jung, S. J. Yoon et al., “Antibacterial properties of a pre-formulated recombinant phage endolysin, SAL-1,” International Journal of Antimicrobial Agents, vol. 41, no. 2, pp. 156–161, 2013. View at Publisher · View at Google Scholar · View at Scopus
  111. S. Y. Jun, G. M. Jung, S. J. Yoon et al., “Preclinical safety evaluation of intravenously administered SAL200 containing the recombinant phage endolysin SAL-1 as a pharmaceutical ingredient,” Antimicrobial Agents and Chemotherapy, vol. 58, no. 4, pp. 2084–2088, 2014. View at Publisher · View at Google Scholar · View at Scopus
  112. Q. Cheng and V. A. Fischetti, “Mutagenesis of a bacteriophage lytic enzyme PlyGBS significantly increases its antibacterial activity against group B streptococci,” Applied Microbiology and Biotechnology, vol. 74, no. 6, pp. 1284–1291, 2007. View at Publisher · View at Google Scholar · View at Scopus
  113. Q. Cheng, D. Nelson, S. Zhu, and V. A. Fischetti, “Removal of group B streptococci colonizing the vagina and oropharynx of mice with a bacteriophage lytic enzyme,” Antimicrobial Agents and Chemotherapy, vol. 49, no. 1, pp. 111–117, 2005. View at Google Scholar
  114. F. Oechslin, J. Daraspe, M. Giddey, P. Moreillon, and G. Resch, “In vitro characterization of PlySK1249, a novel phage lysin, and assessment of its antibacterial activity in a mouse model of Streptococcus agalactiae bacteremia,” Antimicrobial Agents and Chemotherapy, vol. 57, no. 12, pp. 6276–6283, 2013. View at Publisher · View at Google Scholar · View at Scopus
  115. J. M. Entenza, J. M. Loeffler, D. Grandgirard, V. A. Fischetti, and P. Moreillon, “Therapeutic effects of bacteriophage Cpl-1 lysin against Streptococcus pneumoniae endocarditis in rats,” Antimicrobial Agents and Chemotherapy, vol. 49, no. 11, pp. 4789–4792, 2005. View at Publisher · View at Google Scholar · View at Scopus
  116. I. Pérez-Dorado, N. E. Campillo, B. Monterroso et al., “Elucidation of the molecular recognition of bacterial cell wall by modular pneumococcal phage endolysin CPL-1,” The Journal of Biological Chemistry, vol. 282, no. 34, pp. 24990–24999, 2007. View at Publisher · View at Google Scholar · View at Scopus
  117. R. Diez-Martinez, H. D. De Paz, E. García-Fernández et al., “A novel chimeric phage lysin with high in vitro and in vivo bactericidal activity against Streptococcus pneumoniae,” The Journal of Antimicrobial Chemotherapy, vol. 70, no. 6, pp. 1763–1773, 2015. View at Publisher · View at Google Scholar · View at Scopus
  118. R. Diez-Martinez, H. D. De Paz, H. de Paz et al., “Improving the lethal effect of cpl-7, a pneumococcal phage lysozyme with broad bactericidal activity, by inverting the net charge of its cell wall-binding module,” Antimicrobial Agents and Chemotherapy, vol. 57, no. 11, pp. 5355–5365, 2013. View at Publisher · View at Google Scholar · View at Scopus
  119. J. A. McCullers, A. Karlström, A. R. Iverson, J. M. Loeffler, and V. A. Fischetti, “Novel strategy to prevent otitis media caused by colonizing Streptococcus pneumoniae,” PLoS Pathogens, vol. 3, article e28, no. 3, 2007. View at Publisher · View at Google Scholar · View at Scopus
  120. J. M. Loeffler and V. A. Fischetti, “Synergistic lethal effect of a combination of phage lytic enzymes with different activities on penicillin-sensitive and -resistant Streptococcus pneumoniae strains,” Antimicrobial Agents and Chemotherapy, vol. 47, no. 1, pp. 375–377, 2003. View at Publisher · View at Google Scholar · View at Scopus
  121. C. J. Cooper, M. Khan Mirzaei, and A. S. Nilsson, “Adapting drug approval pathways for bacteriophage-based therapeutics,” Frontiers in Microbiology, vol. 7, article 1209, p. 1209, 2016. View at Publisher · View at Google Scholar
  122. A. Nakonieczna, C. J. Cooper, and R. Gryko, “Bacteriophages and bacteriophage-derived endolysins as potential therapeutics to combat gram-positive spore forming bacteria,” Journal of Applied Microbiology, vol. 119, no. 3, pp. 620–631, 2015. View at Publisher · View at Google Scholar · View at Scopus
  123. T. Rajesh, T. Anthony, S. Saranya, P. L. Pushpam, and P. Gunasekaran, “Functional characterization of a new holin-like antibacterial protein coding gene tmp1 from goat skin surface metagenome,” Applied Microbiology and Biotechnology, vol. 89, no. 4, pp. 1061–1073, 2011. View at Publisher · View at Google Scholar · View at Scopus
  124. J. G. Kenny, S. McGrath, G. F. Fitzgerald, and D. van Sinderen, “Bacteriophage Tuc2009 encodes a tail-associated cell wall-degrading activity,” Journal of Bacteriology, vol. 186, no. 11, pp. 3480–3491, 2004. View at Publisher · View at Google Scholar · View at Scopus
  125. A. A. Vipra, S. N. Desai, P. Roy et al., “Antistaphylococcal activity of bacteriophage derived chimeric protein P128,” BMC Microbiology, vol. 12, no. 1, p. 41, 2012, 2010 10 View at Publisher · View at Google Scholar · View at Scopus
  126. T. Pang, T. C. Fleming, K. Pogliano, and R. Young, “Visualization of pinholin lesions in vivo,” Proceedings of the National Academy of Sciences, vol. 110, no. 22, pp. E2054–E2063, 2013. View at Publisher · View at Google Scholar · View at Scopus
  127. Y. Shi, N. Li, Y. Yan et al., “Combined antibacterial activity of phage lytic proteins holin and lysin from Streptococcus suis bacteriophage SMP,” Current Microbiology, vol. 65, no. 1, pp. 28–34, 2012. View at Publisher · View at Google Scholar · View at Scopus
  128. N. D. Olson and J. B. Morrow, “DNA extract characterization process for microbial detection methods development and validation,” BMC Research Notes, vol. 5, no. 1, p. 668, 2012. View at Publisher · View at Google Scholar · View at Scopus
  129. M. J. Loessner, C. E. Rees, G. S. Stewart, and S. Scherer, “Construction of luciferase reporter bacteriophage A511:luxAB for rapid and sensitive detection of viable Listeria cells,” Applied and Environmental Microbiology, vol. 62, no. 4, pp. 1133–1140, 1996. View at Google Scholar
  130. D. A. Schofield, I. J. Molineux, and C. Westwater, ““Bioluminescent” reporter phage for the detection of category a bacterial pathogens,” Journal of Visualized Experiments, vol. article e2740, no. 53, 2011. View at Publisher · View at Google Scholar
  131. R. Awais, H. Fukudomi, K. Miyanaga, H. Unno, and Y. Tanji, “A recombinant bacteriophage-based assay for the discriminative detection of culturable and viable but nonculturable Escherichia coli O157:H7,” Biotechnology Progress, vol. 22, no. 3, pp. 853–859, 2006. View at Publisher · View at Google Scholar · View at Scopus
  132. H. Anany, W. Chen, R. Pelton, and M. W. Griffiths, “Biocontrol of Listeria monocytogenes and Escherichia coli O157:H7 in meat by using phages immobilized on modified cellulose membranes,” Applied and Environmental Microbiology, vol. 77, no. 18, pp. 6379–6387, 2011. View at Publisher · View at Google Scholar · View at Scopus
  133. P. Bardy, R. Pantůček, M. Benešík, and J. Doškař, “Genetically modified bacteriophages in applied microbiology,” Journal of Applied Microbiology, vol. 121, no. 3, pp. 618–633, 2016. View at Publisher · View at Google Scholar · View at Scopus
  134. H. Albert, A. Heydenrych, R. Mole, A. Trollip, and L. Blumberg, “Evaluation of FASTPlaqueTB-RIF, a rapid, manual test for the determination of rifampicin resistance from Mycobacterium tuberculosis cultures,” The International Journal of Tuberculosis and Lung Disease, vol. 5, no. 10, pp. 906–911, 2001. View at Google Scholar
  135. M. Smietana, W. J. Bock, P. Mikulic, A. Ng, R. Chinnappan, and M. Zourob, “Detection of bacteria using bacteriophages as recognition elements immobilized on long-period fiber gratings,” Optics Express, vol. 19, no. 9, pp. 7971–7978, 2011. View at Publisher · View at Google Scholar · View at Scopus
  136. H. Traore, S. Ogwang, K. Mallard et al., “Low-cost rapid detection of rifampicin resistant tuberculosis using bacteriophage in Kampala, Uganda,” Annals of Clinical Microbiology and Antimicrobials, vol. 6, no. 1, p. 1, 2007. View at Publisher · View at Google Scholar · View at Scopus
  137. F. C. Tenover, R. Arbeit, G. Archer et al., “Comparison of traditional and molecular methods of typing isolates of Staphylococcus aureus,” Journal of Clinical Microbiology, vol. 32, no. 2, pp. 407–415, 1994. View at Google Scholar
  138. A. van Belkum and W. M. Dunne, “Next-generation antimicrobial susceptibility testing,” Journal of Clinical Microbiology, vol. 51, no. 7, pp. 2018–2024, 2013. View at Publisher · View at Google Scholar · View at Scopus
  139. S. Hagens, T. de Wouters, P. Vollenweider, and M. J. Loessner, “Reporter bacteriophage A511:celB transduces a hyperthermostable glycosidase from Pyrococcus furiosus for rapid and simple detection of viable Listeria cells,” Bacteriophage, vol. 1, no. 3, pp. 143–151, 2011. View at Publisher · View at Google Scholar
  140. K. V. Sullivan, N. N. Turner, S. S. Roundtree, and K. L. McGowan, “Rapid detection of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible Staphylococcus aureus (MSSA) using the KeyPath MRSA/MSSA blood culture test and the BacT/ALERT system in a pediatric population,” Archives of Pathology & Laboratory Medicine, vol. 137, no. 8, pp. 1103–1105, 2013. View at Publisher · View at Google Scholar · View at Scopus