Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2010 (2010), Article ID 796303, 9 pages
http://dx.doi.org/10.1155/2010/796303
Review Article

Cancer Therapy Based on Nanomaterials and Nanocarrier Systems

College of Bioengineering, Chongqing University, Chongqing 400030, China

Received 30 September 2009; Revised 1 December 2009; Accepted 21 January 2010

Academic Editor: Chao Lin

Copyright © 2010 Weili Qiao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. H. Sarkar, S. Banerjee, and Y. W. Li, “Pancreatic cancer: pathogenesis, prevention and treatment,” Toxicology and Applied Pharmacology, vol. 224, no. 3, pp. 326–336, 2007. View at Publisher · View at Google Scholar · View at PubMed
  2. J. D. Byrne, T. Betancourt, and L. Brannon-Peppas, “Active targeting schemes for nanoparticle systems in cancer therapeutics,” Advanced Drug Delivery Reviews, vol. 60, no. 15, pp. 1615–1626, 2008. View at Publisher · View at Google Scholar · View at PubMed
  3. A. K. Iyer, G. Khaled, J. Fang, and H. Maeda, “Exploiting the enhanced permeability and retention effect for tumor targeting,” Drug Discovery Today, vol. 11, no. 17-18, pp. 812–818, 2006. View at Publisher · View at Google Scholar · View at PubMed
  4. N. Wiradharma, Y. Zhang, S. Venkataraman, J. L. Hedrick, and Y. Y. Yang, “Self-assembled polymer nanostructures for delivery of anticancer therapeutics,” Nano Today, vol. 4, no. 4, pp. 302–317, 2009. View at Publisher · View at Google Scholar
  5. L. Jabr-Milane, L. V. Vlerken, H. Devalapally et al., “Multi-functional nanocarriers for targeted delivery of drugs and genes,” Journal of Controlled Release, vol. 130, no. 2, pp. 121–128, 2008. View at Publisher · View at Google Scholar · View at PubMed
  6. M. Pulkkinen, J. Pikkarainen, T. Wirth et al., “Three-step tumor targeting of paclitaxel using biotinylated PLA-PEG nanoparticles and avidin-biotin technology: formulation development and in vitro anticancer activity,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 70, no. 1, pp. 66–74, 2008. View at Publisher · View at Google Scholar · View at PubMed
  7. N. R. Panyala, E. M. Peña-Méndez, and J. Havel, “Gold and nano-gold in medicine: overview, toxicology and perspectives,” Journal of Applied Biomedicine, vol. 7, no. 2, pp. 75–91, 2009. View at Google Scholar
  8. K. K. Jain, “Nanotechnology in clinical laboratory diagnostics,” Clinica Chimica Acta, vol. 358, no. 1-2, pp. 37–54, 2005. View at Publisher · View at Google Scholar · View at PubMed
  9. G. Linazasoro, “Potential applications of nanotechnologies to Parkinson's disease therapy,” Parkinsonism and Related Disorders, vol. 14, no. 5, pp. 383–392, 2008. View at Publisher · View at Google Scholar · View at PubMed
  10. W. Cai, A. R. Hsu, Z.-B. Li, and X. Chen, “Are quantum dots ready for in vivo imaging in human subjects?” Nanoscale Research Letters, vol. 2, no. 6, pp. 265–281, 2007. View at Publisher · View at Google Scholar
  11. W. Cai and X. Chen, “Nanoplatforms for targeted molecular imaging in living subjects,” Small, vol. 3, no. 11, pp. 1840–1854, 2007. View at Publisher · View at Google Scholar · View at PubMed
  12. A. K. Bajpai, S. K. Shukla, S. Bhanu, and S. Kankane, “Responsive polymers in controlled drug delivery,” Progress in Polymer Science, vol. 33, no. 11, pp. 1088–1118, 2008. View at Publisher · View at Google Scholar
  13. C. Fonseca, S. Simoes, and R. Gaspar, “Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity,” Journal of Controlled Release, vol. 83, no. 2, pp. 273–286, 2002. View at Publisher · View at Google Scholar
  14. M. L. Hans and A. M. Lowman, “Biodegradable nanoparticles for drug delivery and targeting,” Current Opinion in Solid State and Materials Science, vol. 6, no. 4, pp. 319–327, 2002. View at Publisher · View at Google Scholar
  15. N. Sanvicens and M. P. Marco, “Multifunctional nanoparticles—properties and prospects for their use in human medicine,” Trends in Biotechnology, vol. 26, no. 8, pp. 425–433, 2008. View at Publisher · View at Google Scholar · View at PubMed
  16. T. Tanaka, S. Shiramoto, M. Miyashita, Y. Fujishima, and Y. Kaneo, “Tumor targeting based on the effect of enhanced permeability and retention (EPR) and the mechanism of receptor-mediated endocytosis (RME),” International Journal of Pharmaceutics, vol. 277, no. 1-2, pp. 39–61, 2004. View at Publisher · View at Google Scholar · View at PubMed
  17. S. Sandhiya, S. A. Dkhar, and A. Surendiran, “Emerging trends of nanomedicine—an overview,” Fundamental and Clinical Pharmacology, vol. 23, no. 3, pp. 263–269, 2009. View at Publisher · View at Google Scholar · View at PubMed
  18. Y. Fukumori and H. Ichikawa, “Nanoparticles for cancer therapy and diagnosis,” Advanced Powder Technology, vol. 17, no. 1, pp. 1–28, 2006. View at Publisher · View at Google Scholar
  19. M. Johannsen, U. Gneveckow, B. Thiesen et al., “Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution,” European Urology, vol. 52, no. 6, pp. 1653–1662, 2007. View at Publisher · View at Google Scholar · View at PubMed
  20. B. Liu, M. Yang, R. Li et al., “The antitumor effect of novel docetaxel-loaded thermosensitive micelles,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 69, no. 2, pp. 527–534, 2008. View at Publisher · View at Google Scholar · View at PubMed
  21. K. M. Huh, H. S. Min, S. C. Lee, H. J. Lee, S. Kim, and K. Park, “A new hydrotropic block copolymer micelle system for aqueous solubilization of paclitaxel,” Journal of Controlled Release, vol. 126, no. 2, pp. 122–129, 2008. View at Publisher · View at Google Scholar · View at PubMed
  22. O. M. Koo, I. Rubinstein, and H. Onyuksel, “Camptothecin in sterically stabilized phospholipid micelles: a novel nanomedicine,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 1, no. 1, pp. 77–84, 2005. View at Publisher · View at Google Scholar · View at PubMed
  23. C. Lizano, V. Weissig, V. P. Torchilin, P. Sancho, A. I. García-Pérez, and M. Pinilla, “In vivo biodistribution of erythrocytes and polyethyleneglycol-phosphatidylethanolamine micelles carrying the antitumour agent dequalinium,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 56, no. 2, pp. 153–157, 2003. View at Publisher · View at Google Scholar
  24. A. M. Al-Abd, S. H. Lee, S. H. Kim et al., “Penetration and efficacy of VEGF siRNA using polyelectrolyte complex micelles in a human solid tumor model in-vitro,” Journal of Controlled Release, vol. 137, no. 2, pp. 130–135, 2009. View at Google Scholar
  25. N. Wiradharma, Y. W. Tong, and Y. -Y. Yang, “Self-assembled oligopeptide nanostructures for co-delivery of drug and gene with synergistic therapeutic effect,” Biomaterials, vol. 30, no. 17, pp. 3100–3109, 2009. View at Publisher · View at Google Scholar · View at PubMed
  26. L. B. Li and Y. B. Tan, “Preparation and properties of mixed micelles made of Pluronic polymer and PEG-PE,” Journal of Colloid and Interface Science, vol. 317, no. 1, pp. 326–331, 2008. View at Publisher · View at Google Scholar · View at PubMed
  27. A. S. Mikhail and C. Allen, “Block copolymer micelles for delivery of cancer therapy: transport at the whole body, tissue and cellular levels,” Journal of Controlled Release, vol. 138, no. 3, pp. 214–223, 2009. View at Publisher · View at Google Scholar · View at PubMed
  28. G. A. Husseini, N. Y. Rapoport, D. A. Christensen, J. D. Pruitt, and W. G. Pitt, “Kinetics of ultrasonic release of doxorubicin from pluronic P105 micelles,” Colloids and Surfaces B, vol. 24, no. 3-4, pp. 253–264, 2002. View at Publisher · View at Google Scholar
  29. N. Rapoport, “Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery,” Progress in Polymer Science, vol. 32, no. 8-9, pp. 962–990, 2007. View at Publisher · View at Google Scholar
  30. M. Licciardi, G. Giammona, J. Du, S. P. Armes, Y. Tang, and A. L. Lewis, “New folate-functionalized biocompatible block copolymer micelles as potential anti-cancer drug delivery systems,” Polymer, vol. 47, no. 9, pp. 2946–2955, 2006. View at Publisher · View at Google Scholar
  31. J. Ko, K. Park, Y.-S. Kim et al., “Tumoral acidic extracellular pH targeting of pH-responsive MPEG-poly(β-amino ester) block copolymer micelles for cancer therapy,” Journal of Controlled Release, vol. 123, no. 2, pp. 109–115, 2007. View at Publisher · View at Google Scholar · View at PubMed
  32. M. Nakayama, T. Okano, T. Miyazaki, F. Kohori, K. Sakai, and M. Yokoyama, “Molecular design of biodegradable polymeric micelles for temperature-responsive drug release,” Journal of Controlled Release, vol. 115, no. 1, pp. 46–56, 2006. View at Publisher · View at Google Scholar · View at PubMed
  33. X. Yang, Y. H. Chen, R. Yuan et al., “Folate-encoded and Fe3O4-loaded polymeric micelles for dual targeting of cancer cells,” Polymer, vol. 49, no. 16, pp. 3477–3485, 2008. View at Publisher · View at Google Scholar
  34. V. Torchilin, “Multifunctional and stimuli-sensitive pharmaceutical nanocarriers,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 71, no. 3, pp. 431–444, 2009. View at Publisher · View at Google Scholar · View at PubMed
  35. C. Chang, H. Wei, C.-Y. Quan et al., “Fabrication of thermosensitive PCL-PNIPAAm-PCL triblock copolymeric micelles for drug delivery,” Journal of Polymer Science A, vol. 46, no. 9, pp. 3048–3057, 2008. View at Publisher · View at Google Scholar
  36. K. J. Morrow Jr., R. Bawa, and C. Wei, “Recent advances in basic and clinical nanomedicine,” Medical Clinics of North America, vol. 91, no. 5, pp. 805–843, 2007. View at Publisher · View at Google Scholar · View at PubMed
  37. W. J. Yang, Y. Y. Cheng, T. W. Xu, X. Y. Wang, and L. P. Wen, “Targeting cancer cells with biotine-dendrimer conjugates,” European Journal of Medicinal Chemistry, vol. 44, no. 2, pp. 862–868, 2009. View at Google Scholar
  38. S. Svenson and D. A. Tomalia, “Dendrimers in biomedical applications—reflections on the field,” Advanced Drug Delivery Reviews, vol. 57, no. 15, pp. 2106–2129, 2005. View at Publisher · View at Google Scholar · View at PubMed
  39. E. R. Gillies and J. M. J. Fréchet, “Dendrimers and dendritic polymers in drug delivery,” Drug Discovery Today, vol. 10, no. 1, pp. 35–43, 2005. View at Publisher · View at Google Scholar · View at PubMed
  40. D. Bhadra, A. K. Yadav, S. Bhadra, and N. K. Jain, “Glycodendrimeric nanoparticulate carriers of primaquine phosphate for liver targeting,” International Journal of Pharmaceutics, vol. 295, no. 1-2, pp. 221–233, 2005. View at Publisher · View at Google Scholar · View at PubMed
  41. A. K. Patri, A. Myc, J. Beals, T. P. Thomas, N. H. Bander, and J. R. Baker Jr., “Synthesis and in vitro testing of J591 antibody-dendrimer conjugates for targeted prostate cancer therapy,” Bioconjugate Chemistry, vol. 15, no. 6, pp. 1174–1181, 2004. View at Publisher · View at Google Scholar · View at PubMed
  42. M. Hussain, M. Shchepinov, M. Sohail et al., “A novel anionic dendrimer for improved cellular delivery of antisense oligonucleotides,” Journal of Controlled Release, vol. 99, no. 1, pp. 139–155, 2004. View at Publisher · View at Google Scholar · View at PubMed
  43. Y. Choi, T. Thomas, A. Kotlyar, M. T. Islam, and J. R. Baker Jr., “Synthesis and functional evaluation of DNA-assembled polyamidoamine dendrimer clusters for cancer cell-specific targeting,” Chemistry and Biology, vol. 12, no. 1, pp. 35–43, 2005. View at Publisher · View at Google Scholar · View at PubMed
  44. A. A. Shvedova, E. R. Kisin, D. Porter et al., “Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: two faces of Janus?” Pharmacology and Therapeutics, vol. 121, no. 2, pp. 192–204, 2009. View at Publisher · View at Google Scholar · View at PubMed
  45. L. Lacerda, A. Bianco, M. Prato, and K. Kostarelos, “Carbon nanotubes as nanomedicines: from toxicology to pharmacology,” Advanced Drug Delivery Reviews, vol. 58, no. 14, pp. 1460–1470, 2006. View at Publisher · View at Google Scholar · View at PubMed
  46. R. Sharma and C. J. Chen, “Newer nanoparticles in hyperthermia treatment and thermometry,” Journal of Nanoparticle Research, vol. 11, no. 3, pp. 671–689, 2009. View at Publisher · View at Google Scholar
  47. N. W. S. Kam, M. O'Connell, J. A. Wisdom, and H. Dai, “Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 33, pp. 11600–11605, 2005. View at Publisher · View at Google Scholar · View at PubMed
  48. X. K. Zhang, L. J. Meng, Q. H. Lu, Z. F. Fei, and P. J. Dyson, “Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes,” Biomaterials, vol. 30, no. 30, pp. 6041–6047, 2009. View at Google Scholar
  49. K. Y. Kim, “Nanotechnology platforms and physiological challenges for cancer therapeutics,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 3, no. 2, pp. 103–110, 2007. View at Publisher · View at Google Scholar · View at PubMed
  50. S. Klein, O. Zolk, M. F. Fromm, F. Schrödl, W. Neuhuber, and C. Kryschi, “Functionalized silicon quantum dots tailored for targeted siRNA delivery,” Biochemical and Biophysical Research Communications, vol. 387, no. 1, pp. 164–168, 2009. View at Publisher · View at Google Scholar · View at PubMed
  51. D. Li, G. P. Li, W. Guo, P. Li, E. Wang, and J. Wang, “Glutathione-mediated release of functional plasmid DNA from positively charged quantum dots,” Biomaterials, vol. 29, no. 18, pp. 2776–2782, 2008. View at Publisher · View at Google Scholar · View at PubMed
  52. P. Juzenas, W. Chen, Y.-P. Sun et al., “Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer,” Advanced Drug Delivery Reviews, vol. 60, no. 15, pp. 1600–1614, 2008. View at Publisher · View at Google Scholar · View at PubMed
  53. M. Wang, A. J. Hsieh, and G. C. Rutledge, “Electrospinning of poly(MMA-co-MAA) copolymers and their layered silicate nanocomposites for improved thermal properties,” Polymer, vol. 46, no. 10, pp. 3407–3418, 2005. View at Publisher · View at Google Scholar
  54. X. L. Xu, X. S. Chen, A. X. Liu, Z. K. Hong, and X. B. Jing, “Electrospun poly(L-lactide)-grafted hydroxyapatite/ poly(L-lactide) nanocomposite fibers,” European Polymer Journal, vol. 43, no. 8, pp. 3187–3196, 2007. View at Google Scholar
  55. M. Wang, H. Singh, T. A. Hatton, and G. C. Rutledge, “Field-responsive superparamagnetic composite nanofibers by electrospinning,” Polymer, vol. 45, no. 16, pp. 5505–5514, 2004. View at Publisher · View at Google Scholar
  56. E. Jo, S. Lee, K. T. Kim et al., “Core-sheath nanofibers containing colloidal arrays in the core for programmable multi-agent delivery,” Advanced Materials, vol. 20, no. 9, pp. 968–972, 2008. View at Publisher · View at Google Scholar
  57. X. Xu, X. Chen, P. Ma, X. Wang, and X. Jing, “The release behavior of doxorubicin hydrochloride from medicated fibers prepared by emulsion-electrospinning,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 70, no. 1, pp. 165–170, 2008. View at Publisher · View at Google Scholar · View at PubMed
  58. J. Xie and C.-H. Wang, “Electrospun micro- and nanofibers for sustained delivery of paclitaxel to treat C6 Glioma in vitro,” Pharmaceutical Research, vol. 23, no. 8, pp. 1817–1826, 2006. View at Publisher · View at Google Scholar · View at PubMed
  59. X. Xu, X. Chen, X. Xu et al., “BCNU-loaded PEG-PLLA ultrafine fibers and their in vitro antitumor activity against Glioma C6 cells,” Journal of Controlled Release, vol. 114, no. 3, pp. 307–316, 2006. View at Publisher · View at Google Scholar · View at PubMed
  60. X. L. Xu, X. S. Chen, Z. F. Wang, and X. B. Jing, “Ultrafine PEG–PLA fibers loaded with both paclitaxel and doxorubicin hydrochloride and their in vitro cytotoxicity,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 72, no. 1, pp. 18–25, 2009. View at Google Scholar
  61. Y. T. Ko, A. Kale, W. C. Hartner, B. Papahadjopoulos-Sternberg, and V. P. Torchilin, “Self-assembling micelle-like nanoparticles based on phospholipid-polyethyleneimine conjugates for systemic gene delivery,” Journal of Controlled Release, vol. 133, no. 2, pp. 132–138, 2009. View at Publisher · View at Google Scholar · View at PubMed
  62. K. F. Pirollo and E. H. Chang, “Does a targeting ligand influence nanoparticle tumor localization or uptake?” Trends in Biotechnology, vol. 26, no. 10, pp. 552–558, 2008. View at Publisher · View at Google Scholar · View at PubMed
  63. D. J. Betting, X. Y. Mu, K. Kafi et al., “Enhanced immune stimulation by a therapeutic lymphoma tumor antigen vaccine produced in insect cells involves mannose receptor targeting to antigen presenting cells,” Vaccine, vol. 27, no. 2, pp. 250–259, 2009. View at Publisher · View at Google Scholar · View at PubMed
  64. E. Gabano, M. Ravera, C. Cassino, S. Bonetti, G. Palmisano, and D. Osella, “Stepwise assembly of platinum—folic acid conjugates,” Inorganica Chimica Acta, vol. 361, no. 5, pp. 1447–1455, 2008. View at Publisher · View at Google Scholar
  65. H. F. Liang, C. T. Chen, S. C. Chen et al., “Paclitaxel-loaded poly(g-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer,” Biomaterials, vol. 27, no. 9, pp. 2051–2059, 2006. View at Google Scholar
  66. L. Zhu, Z. Huo, L. Wang, X. Tong, Y. Xiao, and K. Ni, “Targeted delivery of methotrexate to skeletal muscular tissue by thermosensitive magnetoliposomes,” International Journal of Pharmaceutics, vol. 370, no. 1-2, pp. 136–143, 2009. View at Publisher · View at Google Scholar · View at PubMed
  67. K. Y. Kim, “Nanotechnology platforms and physiological challenges for cancer therapeutics,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 3, no. 2, pp. 103–110, 2007. View at Publisher · View at Google Scholar · View at PubMed
  68. R. Singh and K. Kostarelos, “Designer adenoviruses for nanomedicine and nanodiagnostics,” Trends in Biotechnology, vol. 27, no. 4, pp. 220–229, 2009. View at Publisher · View at Google Scholar · View at PubMed
  69. W. J. Gradishar, S. Tjulandin, N. Davidson et al., “Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer,” Journal of Clinical Oncology, vol. 23, no. 31, pp. 7794–7803, 2005. View at Publisher · View at Google Scholar · View at PubMed
  70. T. Chidiac, G. T. Budd, R. Pelley et al., “Phase II trial of liposomal doxorubicin (Doxil®) in advanced soft tissue sarcomas,” Investigational New Drugs, vol. 18, no. 3, pp. 253–259, 2000. View at Publisher · View at Google Scholar
  71. S. O. Rodiek, A. Stolzle, and C. B. Lumenta, “Preoperative embolization of intracranial meningiomas with Embosphere® microspheres,” Minimally Invasive Neurosurgery, vol. 47, no. 5, pp. 299–305, 2004. View at Publisher · View at Google Scholar · View at PubMed