Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012, Article ID 260687, 7 pages
http://dx.doi.org/10.1155/2012/260687
Research Article

Growth of Vertically Aligned ZnO Nanowire Arrays Using Bilayered Metal Catalysts

Electronics Science and Technology Division, Naval Research Laboratory, Washington, DC 20375, USA

Received 20 March 2012; Accepted 14 May 2012

Academic Editor: Renzhi Ma

Copyright © 2012 Hua Qi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. D. Wang, J. Liu, Z. L. Wang, and J. Song, “Direct-current nanogenerator driven by ultrasonic waves,” Science, vol. 316, no. 5821, pp. 102–105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. Z. L. Wang and J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science, vol. 312, no. 5771, pp. 242–246, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. C. H. Chen, S. J. Chang, S. P. Chang et al., “Novel fabrication of UV photodetector based on ZnO nanowire/p-GaN heterojunction,” Chemical Physics Letters, vol. 476, no. 1–3, pp. 69–72, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. C. C. Lin, W. H. Lin, and Y. Y. Li, “Synthesis of ZnO nanowires and their applications as an ultraviolet photodetector,” Journal of Nanoscience and Nanotechnology, vol. 9, no. 5, pp. 2813–2819, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Weintraub, S. Chang, S. Singamaneni et al., “Density-controlled, solution-based growth of ZnO nanorod arrays via layer-by-layer polymer thin films for enhanced field emission,” Nanotechnology, vol. 19, no. 43, Article ID 435302, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Y. Lee, T. Y. Tseng, S. Y. Li, and P. Lin, “Electrical characterizations of a controllable field emission triode based on low temperature synthesized ZnO nanowires,” Nanotechnology, vol. 17, no. 1, pp. 83–88, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. M. H. Huang, S. Mao, H. Feick et al., “Room-temperature ultraviolet nanowire nanolasers,” Science, vol. 292, no. 5523, pp. 1897–1899, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Black, A. C. Jones, I. Alexandrou, P. N. Heys, and P. R. Chalker, “The optical properties of vertically aligned ZnO nanowires deposited using a dimethylzinc adduct,” Nanotechnology, vol. 21, no. 4, Article ID 045701, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. K. S. Leschkies, R. Divakar, J. Basu et al., “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Letters, vol. 7, no. 6, pp. 1793–1798, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Tak, S. J. Hong, J. S. Lee, and K. Yong, “Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion,” Journal of Materials Chemistry, vol. 19, no. 33, pp. 5945–5951, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. V. Pachauri, A. Vlandas, K. Kern, and K. Balasubramanian, “Site-specific self-assembled liquid-gated ZnO nanowire transistors for sensing applications,” Small, vol. 6, no. 4, pp. 589–594, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. J. P. Liu, C. X. Guo, C. M. Li et al., “Carbon-decorated ZnO nanowire array: a novel platform for direct electrochemistry of enzymes and biosensing applications,” Electrochemistry Communications, vol. 11, no. 1, pp. 202–205, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. X Zhang, A. Hu, T. Zhang, X. Xue, J. Wen, and W. W. Duley, “Subwavelength plasmonic waveguides based on ZnO nanowires and nanotubes: a theoretical study of thermo-optical properties,” Applied Physics Letters, vol. 96, no. 4, Article ID 043109, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. L. E. Greene, B. D. Yuhas, M. Law, D. Zitoun, and P. D. Yang, “Solution-grown zinc oxide nanowires,” Inorganic Chemistry, vol. 45, no. 19, pp. 7535–7543, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. S. M. Prokes, O. J. Glembocki, R. W. Rendell, and M. G. Ancona, “Enhanced plasmon coupling in crossed dielectric/metal nanowire composite geometries and applications to surface-enhanced Raman spectroscopy,” Applied Physics Letters, vol. 90, no. 9, Article ID 093105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Shafiei, A. Nourbakhsh, B. Ganjipour, M. Zahedifar, and G. Vakili-Nezhaad, “Diameter optimization of VLS-synthesized ZnO nanowires, using statistical design of experiment,” Nanotechnology, vol. 18, no. 35, Article ID 355708, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Qi, O. J. Glembocki, and S. M. Prokes, “Plasmonic properties of vertically aligned nanowire arrays,” Journal of Nanomaterials, vol. 2012, Article ID 843402, 7 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. Q. X. Zhao, P. Klason, and M. Willander, “Growth of ZnO nanostructures by vapor-liquid-solid method,” Applied Physics A, vol. 88, no. 1, pp. 27–30, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Subannajui, N. Ramgir, R. Grimm et al., “ZnO nanowire growth: a deeper understanding based on simulations and controlled oxygen experiments,” Crystal Growth & Design, vol. 10, no. 4, pp. 1585–1589, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Qi, D. Alexson, O. Glembocki, and S. M. Prokes, “Plasmonic coupling on dielectric nanowire core-metal sheath composites,” Nanotechnology, vol. 21, no. 8, Article ID 085705, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Aroca and A. Thedchanamoorthy, “Vibrational studies of molecular organization in evaporated phthalocyanine thin solid films,” Chemistry of Materials, vol. 7, no. 1, pp. 69–74, 1995. View at Google Scholar · View at Scopus
  22. M. Lütt, M. R. Fitzsimmons, and D. Q. Li, “X-ray reflectivity study of self-assembled thin films of macrocycles and macromolecules,” The Journal of Physical Chemistry B, vol. 102, no. 2, pp. 400–405, 1998. View at Google Scholar · View at Scopus
  23. H. Qi, D. Alexson, O. Glembocki, and S. M. Prokes, “The effect of size and size distribution on the oxidation kinetics and plasmonics of nanoscale Ag particles,” Nanotechnology, vol. 21, no. 21, Article ID 215706, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. L. F. Dong, J. Jiao, M. Coulter, and L. Love, “Catalytic growth of CdS nanobelts and nanowires on tungsten substrates,” Chemical Physics Letters, vol. 376, no. 5-6, pp. 653–658, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Z. Dai, Q. L. Zhang, Z. W. Peng et al., “One-step synthesis of low-dimensional CdSe nanostructures and optical waveguide of CdSe nanowires,” Journal of Physics D, vol. 41, no. 13, Article ID 135301, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. L. A. Baker, F. P. Zamborini, L. Sun, and R. M. Crooks, “Dendrimer-mediated adhesion between vapor-deposited Au and glass or Si wafers,” Analytical Chemistry, vol. 71, no. 19, pp. 4403–4406, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Charbonnier, Y. Goepfert, M. Romand, and D. Leonard, “Electroless plating of glass and silicon substrates through surface pretreatments involving plasma-polymerization and grafting processes,” The Journal of Adhesion, vol. 80, no. 12, pp. 1103–1130, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Charbonnier, M. Romand, Y. Goepfert, D. Léonard, and M. Bouadi, “Copper metallization of polymers by a palladium-free electroless process,” Surface and Coatings Technology, vol. 200, no. 18-19, pp. 5478–5486, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. S. E. Kulkova, S. V. Eremeev, S. Hocker, and S. Schmauder, “Electronic structure and adhesion on metal-aluminum-oxide interfaces,” Physics of the Solid State, vol. 52, no. 12, pp. 2589–2595, 2010. View at Publisher · View at Google Scholar · View at Scopus