Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012, Article ID 371927, 8 pages
http://dx.doi.org/10.1155/2012/371927
Research Article

Challenges and Benefits of Utilizing Carbon Nanofilaments in Cementitious Materials

Zachry Department of Civil Engineering, Texas A&M University, CE/TTI 503-C, 3136 TAMU, College Station, TX 77843-3136, USA

Received 14 January 2012; Accepted 18 April 2012

Academic Editor: Tong Lin

Copyright © 2012 Ardavan Yazdanbakhsh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. P. Salvetat and A. J. Kuik, “Electronic and mechanical properties of carbon nanotubes,” Advanced Materials, vol. 22, article 7, 1997. View at Google Scholar
  2. E. W. Wong, P. E. Sheehan, and C. M. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science, vol. 277, no. 5334, pp. 1971–1975, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science, vol. 287, no. 5453, pp. 637–640, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. D. A. Walters, L. M. Ericson, M. J. Casavant et al., “Elastic strain of freely suspended single-wall carbon nanotube ropes,” Applied Physics Letters, vol. 74, no. 25, pp. 3803–3805, 1999. View at Google Scholar · View at Scopus
  5. O. Lourie, D. M. Cox, and H. D. Wagner, “Buckling and collapse of embedded carbon nanotubes,” Physical Review Letters, vol. 81, no. 8, pp. 1638–1641, 1998. View at Google Scholar · View at Scopus
  6. B. Yakobson and P. Avouris, “Mechanical properties of carbon nanotubes,” in Carbon Nanotubes, Topics in Applied Physics, pp. 287–327, Springer, Berlin, Germany, 2001. View at Google Scholar
  7. T. Ozkan, Q. Chen, M. Naraghi, and I. Chasiotis, “Mechanical and interface properties of carbon nanofibers for polymer nanocomposites,” in Proceedings of the International SAMPE Technical Conference and Exhibition, Multifunctional Materials, Working Smarter Together (SAMPE '08), Nashville, Tenn, USA, September 2008. View at Scopus
  8. A. Yazdanbakhsh, Z. C. Grasley, B. Tyson, and R. K. Abu Al-Rub, “Carbon nano filaments in cementitious materials: some issues on dispersion and interfacial bond,” in Proceedings of the American Concrete Institute (ACI '09), vol. 267, pp. 21–34, November 2009. View at Scopus
  9. A. Yazdanbakhsh, Z. Grasley, B. Tyson, and R. K. Abu Al-Rub, “Distribution of carbon nanofibers and nanotubes in cementitious composites,” Transportation Research Record, no. 2142, pp. 89–95, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Zhao, D. Shi, and J. Lian, “Small angle light scattering study of improved dispersion of carbon nanofibers in water by plasma treatment,” Carbon, vol. 47, no. 10, pp. 2329–2336, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Azoubel and S. Magdassi, “The formation of carbon nanotube dispersions by high pressure homogenization and their rapid characterization by analytical centrifuge,” Carbon, vol. 48, no. 12, pp. 3346–3352, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Nadler, T. Mahrholz, U. Riedel, C. Schilde, and A. Kwade, “Preparation of colloidal carbon nanotube dispersions and their characterisation using a disc centrifuge,” Carbon, vol. 46, no. 11, pp. 1384–1392, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Yu, N. Grossiord, C. E. Koning, and J. Loos, “Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution,” Carbon, vol. 45, no. 3, pp. 618–623, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Bai, I. S. Park, S. J. Lee et al., “Aqueous dispersion of surfactant-modified multiwalled carbon nanotubes and their application as an antibacterial agent,” Carbon, vol. 49, no. 11, pp. 3663–3671, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Leinonen, M. Pettersson, and M. Lajunen, “Water-soluble carbon nanotubes through sugar azide functionalization,” Carbon, vol. 49, no. 4, pp. 1299–1304, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. M. J. Sobkowicz, J. R. Dorgan, K. W. Gneshin, A. M. Herring, and J. T. McKinnon, “Controlled dispersion of carbon nanospheres through surface functionalization,” Carbon, vol. 47, no. 3, pp. 622–628, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. L. I. Nasibulina, I. V. Anoshkin, S. D. Shandakov et al., “Direct synthesis of carbon nanofibers on cement particles,” Transportation Research Record, no. 2142, pp. 96–101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. J. M. Makar and J. J. Beaudoin, “Carbon nanotubes and their application in the construction industry,” in Proceedings of the 1st International Symposium on Nanotechnology in Construction, Paisley, Scotland, 2004.
  19. J. Makar, J. Margeson, and J. Luh, “Carbon nanotube/cement composites – early results and potential applications,” in Proceedings of the 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications, Vancouver, Canada, 2005.
  20. Z. Grasley and A. Yazdanbakhsh, “High-performance stress-relaxing cementitious composites (SRCC) for crack-free pavements and transportation structures,” Tech. Rep. DTFH61-08-H-00004, Federal Highway Administration, 2011. View at Google Scholar
  21. P. C. Ma, S. Y. Mo, B. Z. Tang, and J. K. Kim, “Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites,” Carbon, vol. 48, no. 6, pp. 1824–1834, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Kotaki, K. Wang, M. L. Toh, L. Chen, S. Y. Wong, and C. He, “Electrically conductive epoxy/clay/vapor grown carbon fiber hybrids,” Macromolecules, vol. 39, no. 3, pp. 908–911, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. J. F. Feller, S. Bruzaud, and Y. Grohens, “Influence of clay nanofiller on electrical and rheological properties of conductive polymer composite,” Materials Letters, vol. 58, no. 5, pp. 739–745, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Liu and J. C. Grunlan, “Clay assisted dispersion of carbon nanotubes in conductive epoxy nanocomposites,” Advanced Functional Materials, vol. 17, no. 14, pp. 2343–2348, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Sanchez and C. Ince, “Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites,” Composites Science and Technology, vol. 69, no. 7-8, pp. 1310–1318, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. X. Fu and D. D. L. Chung, “Submicron-diameter-carbon-filament cement-matrix composites,” Carbon, vol. 36, no. 4, pp. 459–462, 1998. View at Google Scholar · View at Scopus
  27. S. Luo, T. Liu, and B. Wang, “Comparison of ultrasonication and microfluidization for high throughput and large-scale processing of SWCNT dispersions,” Carbon, vol. 48, no. 10, pp. 2992–2994, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Ormsby, T. McNally, C. Mitchell et al., “Effect of MWCNT addition on the thermal and rheological properties of polymethyl methacrylate bone cement,” Carbon, vol. 49, no. 9, pp. 2893–2904, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Fidjestol, “Guide for the use of silica fume in concrete,” ACI Committee 234 Reports, 2006. View at Google Scholar
  30. T. Kowald, “Influence of surface-modified carbon nanotubes on ultrahigh performance concrete,” in Proceedings of the International Symposium on Ultra High Performance Concrete, 2004.
  31. G. Y. Li, P. M. Wang, and X. Zhao, “Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes,” Carbon, vol. 43, no. 6, pp. 1239–1245, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Gay and F. Sanchez, “Performance of carbon nanofiber-cement composites with a high-range water reducer,” Transportation Research Record, no. 2142, pp. 109–113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. Z. S. Metaxa, M. S. Konsta-Gdoutos, and S. P. Shah, “Carbon nanotubes reinforced concrete,” in Proceedings of the American Concrete Institute (ACI '09), pp. 11–20, New Orleans, La, USA, November 2009. View at Scopus
  34. S. P. Shah, “Nanoscale modification of cementitious materials,” in Proceedings of the 3rd International Symposium on Nanotechnology in Construction, pp. 125–130, 2009.
  35. M. S. Konsta-Gdoutos, Z. S. Metaxa, and S. P. Shah, “Highly dispersed carbon nanotube reinforced cement based materials,” Cement and Concrete Research, vol. 40, no. 7, pp. 1052–1059, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. M. S. Konsta-Gdoutos, Z. S. Metaxa, and S. P. Shah, “Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites,” Cement and Concrete Composites, vol. 32, no. 2, pp. 110–115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Cwirzen, K. Habermehl-Cwirzen, and V. Penttala, “Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites,” Advances in Cement Research, vol. 20, no. 2, pp. 65–73, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. B. M. Tyson, R. K. Abu Al-Rub, A. Yazdanbakhsh, and Z. Grasley, “Carbon nanotubes and carbon nanofibers for enhancing the mechanical properties of nanocomposite cementitious materials,” Journal of Materials in Civil Engineering, vol. 23, no. 7, pp. 1028–1035, 2011. View at Publisher · View at Google Scholar · View at Scopus