Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012, Article ID 382639, 9 pages
http://dx.doi.org/10.1155/2012/382639
Research Article

Needleless Melt-Electrospinning of Polypropylene Nanofibres

1Australian Future Fibres Research and Innovation Centre, Deakin University, Geelong, VIC 3216, Australia
2LyondellBasell Australia Pty Ltd., Corio, VIC 3214, Australia

Received 13 December 2011; Accepted 4 March 2012

Academic Editor: Gajanan S. Bhat

Copyright © 2012 Jian Fang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Doshi and D. H. Reneker, “Electrospinning process and applications of electrospun fibers,” Journal of Electrostatics, vol. 35, no. 2-3, pp. 151–160, 1995. View at Google Scholar · View at Scopus
  2. J. Fang, T. Lin, W. Tian, A. Sharma, and X. Wang, “Toughened electrospun nanofibers from crosslinked elastomer-thermoplastic blends,” Journal of Applied Polymer Science, vol. 105, no. 4, pp. 2321–2326, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Greiner and J. H. Wendorff, “Electrospinning: a fascinating method for the preparation of ultrathin fibers,” Angewandte Chemie, vol. 46, no. 30, pp. 5670–5703, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Li and Y. Xia, “Direct fabrication of composite and ceramic hollow nanofibers by electrospinning,” Nano Letters, vol. 4, no. 5, pp. 933–938, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Lin, H. Wang, H. Wang, and X. Wang, “Effects of polymer concentration and cationic surfactant on the morphology of electrospun polyacrylonitrile nanofibres,” Journal of Materials Science and Technology, vol. 21, no. 1, pp. 9–12, 2005. View at Google Scholar · View at Scopus
  6. T. Lin, H. Wang, and X. Wang, “Self-crimping bicomponent nanofibers electrospun from polyacrylonitrile and elastomeric polyurethane,” Advanced Materials, vol. 17, no. 22, pp. 2699–2703, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Fang, H. Niu, T. Lin, and X. Wang, “Applications of electrospun nanofibers,” Chinese Science Bulletin, vol. 53, no. 15, pp. 2265–2286, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Wang, J. Ding, B. Lee, X. Wang, and T. Lin, “Polypyrrole-coated electrospun nanofibre membranes for recovery of Au(III) from aqueous solution,” Journal of Membrane Science, vol. 303, no. 1-2, pp. 119–125, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Wang, J. Fang, T. Cheng et al., “One-step coating of fluoro-containing silica nanoparticles for universal generation of surface superhydrophobicity,” Chemical Communications, no. 7, pp. 877–879, 2008. View at Google Scholar
  10. J. Fang, X. Wang, and T. Lin, “Electrical power generator from randomly oriented electrospun poly(vinylidene fluoride) nanofibre membranes,” Journal of Materials Chemistry, vol. 21, no. 30, pp. 11088–11091, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Niu, J. Zhang, Z. Xie, X. Wang, and T. Lin, “Preparation, structure and supercapacitance of bonded carbon nanofiber electrode materials,” Carbon, vol. 49, no. 7, pp. 2380–2388, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Lyons, C. Li, and F. Ko, “Melt-electrospinning part I: processing parameters and geometric properties,” Polymer, vol. 45, no. 22, pp. 7597–7603, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Larrondo and R. S. J. Manley, “lectrostatic fiber spinning from polymer metls—1. Experimental observations on fiber formation and properties,” Journal of Polymer Science, vol. 19, no. 6, pp. 909–920, 1981. View at Google Scholar · View at Scopus
  14. L. Larrondo and R. S. J. Manley, “Electrostatic fiber spinning from polymer metls—2. Examination of the flow field in an electrically driven jet,” Journal of Polymer Science, vol. 19, no. 6, pp. 921–932, 1981. View at Google Scholar · View at Scopus
  15. L. Larrondo and R. S. J. Manley, “Electrostatic fiber spinning from polymer metls—3. Electrostatic deformation of a pendant drop of polymer melt,” Journal of Polymer Science, vol. 19, no. 6, pp. 933–940, 1981. View at Google Scholar · View at Scopus
  16. P. D. Dalton, D. Grafahrend, K. Klinkhammer, D. Klee, and M. Möller, “Electrospinning of polymer melts: phenomenological observations,” Polymer, vol. 48, no. 23, pp. 6823–6833, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Kadomae, Y. Maruyama, M. Sugimoto, T. Taniguchi, and K. Koyama, “Relation between tacticity and fiber diameter in melt-electrospinning of polypropylene,” Fibers and Polymers, vol. 10, no. 3, pp. 275–279, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Zhmayev, D. Cho, and Y. L. Joo, “Nanofibers from gas-assisted polymer melt electrospinning,” Polymer, vol. 51, no. 18, pp. 4140–4144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Zhmayev, D. Cho, and Y. L. Joo, “Modeling of melt electrospinning for semi-crystalline polymers,” Polymer, vol. 51, no. 1, pp. 274–290, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Liu, X. Wang, H. Yan, C. Guan, and W. Yang, “Dissipative particle dynamics simulation on the fiber dropping process of melt electrospinning,” Journal of Materials Science, vol. 46, no. 24, pp. 7877–7882, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Zhmayev, D. Cho, and Y. Lak Joo, “Electrohydrodynamic quenching in polymer melt electrospinning,” Physics of Fluids, vol. 23, no. 7, Article ID 073102, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Deng, Y. Liu, Y. Ding, P. Xie, L. Luo, and W. Yang, “Melt electrospinning of low-density polyethylene having a low-melt flow index,” Journal of Applied Polymer Science, vol. 114, no. 1, pp. 166–175, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Ogata, G. Lu, T. Iwata, S. Yamaguchi, K. Nakane, and T. Ogihara, “Effects of ethylene content of poly(ethylene-co-vinyl alcohol) on diameter of fibers produced by melt-electrospinning,” Journal of Applied Polymer Science, vol. 104, no. 2, pp. 1368–1375, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Ogata, N. Shimada, S. Yamaguchi, K. Nakane, and T. Ogihara, “Melt-electrospinning of poly(ethylene terephthalate) and polyalirate,” Journal of Applied Polymer Science, vol. 105, no. 3, pp. 1127–1132, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Ogata, S. Yamaguchi, N. Shimada et al., “Poly(lactide) nanofibers produced by a melt-electrospinning system with a laser melting device,” Journal of Applied Polymer Science, vol. 104, no. 3, pp. 1640–1645, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. P. D. Dalton, J. Lleixà Calvet, A. Mourran, D. Klee, and M. Möller, “Melt electrospinning of poly-(ethylene glycol-block-epsilon-caprolactone),” Biotechnology Journal, vol. 1, no. 9, pp. 998–1006, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Liu, R. Deng, M. Hao, H. Yan, and W. Yang, “Orthogonal design study on factors effecting on fibers diameter of melt electrospinning,” Polymer Engineering and Science, vol. 50, no. 10, pp. 2074–2078, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Tian, N. Ogata, N. Shimada, K. Nakane, T. Ogihara, and M. Yu, “Melt electrospinning from poly(L-lactide) rods coated with poly(ethylene-co-vinyl alcohol),” Journal of Applied Polymer Science, vol. 113, no. 2, pp. 1282–1288, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Detta, T. D. Brown, F. K. Edin et al., “Melt electrospinning of polycaprolactone and its blends with poly(ethylene glycol),” Polymer International, vol. 59, no. 11, pp. 1558–1562, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. X. F. Wang and Z. M. Huang, “Melt-electrospinning of PMMA,” Chinese Journal of Polymer Science, vol. 28, no. 1, pp. 45–53, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. D. W. Hutmacher and P. D. Dalton, “Melt electrospinning,” Chemistry, vol. 6, no. 1, pp. 44–56, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Lee and S. K. Obendorf, “Developing protective textile materials as barriers to liquid penetration using melt-electrospinning,” Journal of Applied Polymer Science, vol. 102, no. 4, pp. 3430–3437, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Zhou, T. B. Green, and Y. L. Joo, “The thermal effects on electrospinning of polylactic acid melts,” Polymer, vol. 47, no. 21, pp. 7497–7505, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Chung, N. P. Ingle, G. A. Montero, S. H. Kim, and M. W. King, “Bioresorbable elastomeric vascular tissue engineering scaffolds via melt spinning and electrospinning,” Acta Biomaterialia, vol. 6, no. 6, pp. 1958–1967, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Karchin, F. I. Simonovsky, B. D. Ratner, and J. E. Sanders, “Melt electrospinning of biodegradable polyurethane scaffolds,” Acta Biomaterialia, vol. 7, no. 9, pp. 3277–3284, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Watanabe, B. S. Kim, and I. S. Kim, “Development of polypropylene nanofiber production system,” Polymer Reviews, vol. 51, no. 3, pp. 288–308, 2011. View at Google Scholar
  37. H. Niu, T. Lin, and X. Wang, “Needleless electrospinning. I. A comparison of cylinder and disk nozzles,” Journal of Applied Polymer Science, vol. 114, no. 6, pp. 3524–3530, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Lin, H. Wang, H. Wang, and X. Wang, “The charge effect of cationic surfactants on the elimination of fibre beads in the electrospinning of polystyrene,” Nanotechnology, vol. 15, no. 9, pp. 1375–1381, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. W. Janna, Engineering Heat Transfer, CRC Press, Boca Raton, Fla, USA, 2nd edition, 2000.
  40. V. E. Kalayci, P. K. Patra, Y. K. Kim, S. C. Ugbolue, and S. B. Warner, “Charge consequences in electrospun polyacrylonitrile (PAN) nanofibers,” Polymer, vol. 46, no. 18, pp. 7191–7200, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Lin, J. Fang, H. Wang, T. Cheng, and X. Wang, “Using chitosan as a thickener for electrospinning dilute PVA solutions to improve fibre uniformity,” Nanotechnology, vol. 17, no. 15, article 017, pp. 3718–3723, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. S. A. Hedrick and S. S. C. Chuang, “Temperature programmed decomposition of polypropylene: in situ FTIR coupled with mass spectroscopy study,” Thermochimica Acta, vol. 315, no. 2, pp. 159–168, 1998. View at Google Scholar · View at Scopus
  43. H. M. Abdel-Hamid, “Effect of electron beam irradiation on polypropylene films-dielectric and FT-IR studies,” Solid-State Electronics, vol. 49, no. 7, pp. 1163–1167, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. J. A. Johnson, M. J. Barbato, S. R. Hopkins, and M. J. O'Malley, “Dispersion and film properties of carbon nanofiber pigmented conductive coatings,” Progress in Organic Coatings, vol. 47, no. 3-4, pp. 198–206, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Myers, Surfactant Science and Technology, John Wiley & Sons, Hoboken, NJ, USA, 3rd edition, 2006.