Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012, Article ID 478296, 6 pages
http://dx.doi.org/10.1155/2012/478296
Research Article

Challenges Found When Patterning Semiconducting Polymers with Electric Fields for Organic Solar Cell Applications

1Materials Division, National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK
2Laboratory for Functional Polymers, Swiss Federal Institute for Materials Science and Technology, Empa, Ueberlandstrasse 129, 8600 Dübendorf, Switzerland

Received 26 January 2012; Accepted 11 April 2012

Academic Editor: Mauro Coelho dos Santos

Copyright © 2012 Fernando A. de Castro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Jiang, X. Wang, and L. Chi, “Nanoscaled surface patterning of conducting polymers,” Small, vol. 7, no. 10, pp. 1309–1321, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Xu, F. Zhang, and X. Feng, “Patterning of conjugated polymers for organic optoelectronic devices,” Small, vol. 7, no. 10, pp. 1338–1360, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. Z. Nie and E. Kumacheva, “Patterning surfaces with functional polymers,” Nature Materials, vol. 7, no. 4, pp. 277–290, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. U. Steiner, “Structure formation in polymer films,” in Nanoscale Assembly, W. T. S. Huck, Ed., vol. 1, pp. 1–24, Springer, 2005. View at Google Scholar
  5. Y. Liang, Z. Xu, J. Xia et al., “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Advanced Materials, vol. 22, no. 20, pp. E135–E138, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Helgesen, R. Søndergaard, and F. C. Krebs, “Advanced materials and processes for polymer solar cell devices,” Journal of Materials Chemistry, vol. 20, no. 1, pp. 36–60, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Walker, C. Kim, and T. Q. Nguyen, “Small molecule solution-processed bulk heterojunction solar cells,” Chemistry of Materials, vol. 23, no. 3, pp. 470–482, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. P. G. Nicholson and F. A. Castro, “Organic photovoltaics: principles and techniques for nanometre scale characterization,” Nanotechnology, vol. 21, no. 49, Article ID 492001, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” Journal of Applied Physics, vol. 93, no. 7, pp. 3693–3723, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. P. K. Watkins, A. B. Walker, and G. L. B. Verschoor, “Dynamical monte carlo modelling of organic solar cells: the dependence of internal quantum efficiency on morphology,” Nano Letters, vol. 5, no. 9, pp. 1814–1818, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. F. A. Castro, H. Benmansour, C. F. O. Graeff, F. Nüesch, E. Tutis, and R. Hany, “Nanostructured organic layers via polymer demixing for interface-enhanced photovoltaic cells,” Chemistry of Materials, vol. 18, no. 23, pp. 5504–5509, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. X. He, F. Gao, G. Tu et al., “Formation of nanopatterned polymer blends in photovoltaic devices,” Nano Letters, vol. 10, no. 4, pp. 1302–1307, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Wu and W. B. Russel, “Micro- and nano-patterns created via electrohydrodynamic instabilities,” Nano Today, vol. 4, no. 2, pp. 180–192, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. D. Morariu, N. E. Voicu, E. Schäffer, Z. Lin, T. P. Russell, and U. Steiner, “Hierarchical structure formation and pattern replication induced by an electric field,” Nature Materials, vol. 2, no. 1, pp. 48–52, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. P. S. G. Pattader, I. Banerjee, A. Sharma, and D. Bandyopadhyay, “Multiscale pattern generation in viscoelastic polymer films by spatiotemporal modulation of electric field and control of rheology,” Advanced Functional Materials, vol. 21, no. 2, pp. 324–335, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Schäffer, T. Thurn-Albrecht, T. P. Russell, and U. Steiner, “Electrically induced structure formation and pattern transfer,” Nature, vol. 403, no. 6772, pp. 874–877, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. R. F. Cossiello, L. Akcelrud, and T. D. Z. Atvars, “Solvent and molecular weight effects on fluorescence emission of MEH-PPV,” Journal of the Brazilian Chemical Society, vol. 16, no. 1, pp. 74–86, 2005. View at Google Scholar · View at Scopus
  18. B. Conings, S. Bertho, K. Vandewal et al., “Modeling the temperature induced degradation kinetics of the short circuit current in organic bulk heterojunction solar cells,” Applied Physics Letters, vol. 96, no. 16, Article ID 163301, 3 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Y. Kim and C. D. Frisbie, “Correlation of phase behavior and charge transport in conjugated polymer/fullerene blends,” Journal of Physical Chemistry C, vol. 112, no. 45, pp. 17726–17736, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Review of Scientific Instruments, vol. 78, no. 1, Article ID 013705, 8 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Goldberg-Oppenheimer and U. Steiner, “Rapid electrohydrodynamic lithography using low-viscosity polymers,” Small, vol. 6, no. 11, pp. 1248–1254, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. M. D. Dickey, A. Raines, E. Collister, R. T. Bonnecaze, S. V. Sreenivasan, and C. G. Willson, “High-aspect ratio polymeric pillar arrays formed via electrohydrodynamic patterning,” Journal of Materials Science, vol. 43, no. 1, pp. 117–122, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Schäffer, T. Thurn-Albrecht, T. P. Russell, and U. Steiner, “Electrohydrodynamic instabilities in polymer films,” Europhysics Letters, vol. 53, no. 4, pp. 518–524, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. L. F. Pease and W. B. Russel, “Linear stability analysis of thin leaky dielectric films subjected to electric fields,” Journal of Non-Newtonian Fluid Mechanics, vol. 102, no. 2, pp. 233–250, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Harkema and U. Steiner, “Hierarchical pattern formation in thin polymer films using an electric field and vapor sorption,” Advanced Functional Materials, vol. 15, no. 12, pp. 2016–2020, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Schwalm, J. Wiesecke, S. Immel, and M. Rehahn, “The gilch synthesis of poly(p-phenylene vinylenes): mechanistic knowledge in the service of advanced materials,” Macromolecular Rapid Communications, vol. 30, no. 15, pp. 1295–1322, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Heier, J. Groenewold, and U. Steiner, “Pattern formation in thin polymer films by spatially modulated electric fields,” Soft Matter, vol. 5, pp. 3997–4005, 2009. View at Google Scholar