Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013, Article ID 681391, 6 pages
http://dx.doi.org/10.1155/2013/681391
Research Article

Hierarchical Structures and Shaped Particles of Bioactive Glass and Its In Vitro Bioactivity

1Molecular Technology Research Unit, School of Science, Walailak University, Nakhon Si Thammarat 80161, Thailand
2Department of Chemistry, University of Minnesota, MN 55455, USA

Received 12 April 2013; Revised 3 June 2013; Accepted 22 July 2013

Academic Editor: Jie Huang

Copyright © 2013 U. Boonyang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Vallet-Regí, L. Ruiz-González, I. Izquierdo-Barba, and J. M. González-Calbet, “Revisiting silica based ordered mesoporous materials: medical applications,” Journal of Materials Chemistry, vol. 16, no. 1, pp. 26–31, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. X. Yan, X. Huang, C. Yu et al., “The in vitro bioactivity of mesoporous bioactive glasses,” Biomaterials, vol. 27, no. 18, pp. 3396–3403, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. A. López-Noriega, D. Arcos, I. Izquierdo-Barba, Y. Sakamoto, O. Terasaki, and M. Vallet-Regí, “Ordered mesoporous bioactive glasses for bone tissue regeneration,” Chemistry of Materials, vol. 18, no. 13, pp. 3137–3144, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. X. Li, X. Wang, H. Chen, P. Jiang, X. Dong, and J. Shi, “Hierarchically porous bioactive glass scaffolds synthesized with a PUF and P123 cotemplated approach,” Chemistry of Materials, vol. 19, no. 17, pp. 4322–4326, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. E. Davis, “Ordered porous materials for emerging applications,” Nature, vol. 417, no. 6891, pp. 813–821, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. C. W. Lee, D. H. Ahn, B. Wang, J. S. Hwang, and S. Park, “Hydroxylation of phenol over surface functionalized MCM-41 supported metal catalyst,” Microporous and Mesoporous Materials, vol. 44-45, pp. 587–594, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. W. H. Zhang, J. Lu, B. Han et al., “Direct synthesis and characterization of titanium-substituted mesoporous molecular sieve SBA-15,” Chemistry of Materials, vol. 14, no. 8, pp. 3413–3421, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Yang, H. Sheu, and K. Chao, “Templated synthesis and structural study of densely packed metal nanostructures in MCM-41 and MCM-48,” Advanced Functional Materials, vol. 12, no. 2, pp. 143–148, 2002. View at Google Scholar
  9. L. Li, J. Shi, J. Yan, X. Zhao, and H. Chen, “Mesoporous SBA-15 material functionalized with ferrocene group and its use as heterogeneous catalyst for benzene hydroxylation,” Applied Catalysis A, vol. 263, no. 2, pp. 213–217, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. J. R. Jones and L. L. Hench, “Effect of surfactant concentration and composition on the structure and properties of sol-gel-derived bioactive glass foam scaffolds for tissue engineering,” Journal of Materials Science, vol. 38, no. 18, pp. 3783–3790, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Vallet-Regí, “Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering,” Chemistry, vol. 12, no. 23, pp. 5934–5943, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Pirhonen, L. Moimas, and J. Haapanen, “Porous bioactive 3-D glass fiber scaffolds for tissue engineering applications manufactured by sintering technique,” Key Engineering Materials, vol. 240–242, pp. 237–240, 2003. View at Google Scholar · View at Scopus
  13. W. Xia and J. Chang, “Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system,” Journal of Controlled Release, vol. 110, no. 3, pp. 522–530, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Vallet-Regi, A. Rámila, R. P. Del Real, and J. Pérez-Pariente, “A new property of MCM-41: drug delivery system,” Chemistry of Materials, vol. 13, no. 2, pp. 308–311, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. W. Xia and J. Chang, “Preparation, in vitro bioactivity and drug release property of well-ordered mesoporous 58S bioactive glass,” Journal of Non-Crystalline Solids, vol. 354, no. 12-13, pp. 1338–1341, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Li, Z. Wang, and A. Stein, “Shaping mesoporous silica nanoparticles by disassembly of hierarchically porous structures,” Angewandte Chemie, vol. 46, no. 11, pp. 1885–1888, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Yan, C. F. Blanford, W. H. Smyrl, and A. Stein, “Preparation and structure of 3D ordered macroporous alloys by PMMA colloidal crystal templating,” Chemical Communications, no. 16, pp. 1477–1478, 2000. View at Google Scholar · View at Scopus
  18. G. S. Attard, J. C. Glyde, and C. G. Göltner, “Liquid-crystalline phases as templates for the synthesis of mesoporous silica,” Nature, vol. 378, no. 6555, pp. 366–368, 1995. View at Google Scholar · View at Scopus
  19. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, and T. Yamamuro, “Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3,” Journal of Biomedical Materials Research, vol. 24, no. 6, pp. 721–734, 1990. View at Publisher · View at Google Scholar · View at Scopus
  20. L. L. Hench and J. K. West, “The Sol-Gel process,” Chemical Reviews, vol. 90, no. 1, pp. 33–72, 1990. View at Google Scholar · View at Scopus
  21. S. Padilla, J. Román, A. Carenas, and M. Vallet-Regí, “The influence of the phosphorus content on the bioactivity of sol-gel glass ceramics,” Biomaterials, vol. 26, no. 5, pp. 475–483, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Serra, P. González, S. Liste et al., “FTIR and XPS studies of bioactive silica based glasses,” Journal of Non-Crystalline Solids, vol. 332, no. 1–3, pp. 20–27, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Zhu, C. Wu, Y. Ramaswamy et al., “Preparation, characterization and in vitro bioactivity of mesoporous bioactive glasses (MBGs) scaffolds for bone tissue engineering,” Microporous and Mesoporous Materials, vol. 112, no. 1–3, pp. 494–503, 2008. View at Publisher · View at Google Scholar · View at Scopus