Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2014, Article ID 573238, 6 pages
http://dx.doi.org/10.1155/2014/573238
Research Article

Bioactivity Assessment of Poly(ɛ-caprolactone)/Hydroxyapatite Electrospun Fibers for Bone Tissue Engineering Application

Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia (UTM), Skudai, 81310 Johor Bahru, Johor, Malaysia

Received 9 May 2014; Accepted 26 June 2014; Published 9 July 2014

Academic Editor: Hao Bai

Copyright © 2014 Mohd Izzat Hassan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. J. Webster and E. S. Ahn, “Nanostructured biomaterials for tissue engineering bone,” Advances in Biochemical Engineering/Biotechnology, vol. 103, pp. 275–308, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. V. Leung and F. Ko, “Biomedical applications of nanofibers,” Polymers for Advanced Technologies, vol. 22, no. 3, pp. 350–365, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. L. T. H. Nguyen, S. Chen, N. K. Elumalai et al., “Biological, chemical, and electronic applications of nanofibers,” Macromolecular Materials and Engineering, vol. 298, no. 8, pp. 822–867, 2013. View at Google Scholar
  4. N. Sultana and T. H. Khan, “Water absorption and diffusion characteristics of nanohydroxyapatite (nHA) and poly(hydroxybutyrate-co-hydroxyvalerate-) based composite tissue engineering scaffolds and nonporous thin films,” Journal of Nanomaterials, vol. 2013, Article ID 479109, 8 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Sun, T. H. Khan, and N. Sultana, “Fabrication and in vitro evaluation of nanosized hydroxyapatite/Chitosan-based tissue engineering scaffolds,” Journal of Nanomaterials, vol. 2014, Article ID 194680, 8 pages, 2014. View at Publisher · View at Google Scholar
  6. L. A. Bosworth and S. Downes, “Acetone, a sustainable solvent for electrospinning poly(ε-caprolactone) fibres: effect of varying parameters and solution concentrations on fibre diameter,” Journal of Polymers and the Environment, vol. 20, no. 3, pp. 879–886, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Cipitria, A. Skelton, T. R. Dargaville, P. D. Dalton, and D. W. Hutmacher, “Design, fabrication and characterization of PCL electrospun scaffolds—a review,” Journal of Materials Chemistry, vol. 21, no. 26, pp. 9419–9453, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. L. S. Nair and C. T. Laurencin, “Biodegradable polymers as biomaterials,” Progress in Polymer Science, vol. 32, no. 8-9, pp. 762–798, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. C. H. Kim, M. S. Khil, H. Y. Kim, H. U. Lee, and K. Y. Jahng, “An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation,” Journal of Biomedical Materials Research B: Applied Biomaterials, vol. 78, no. 2, pp. 283–290, 2005. View at Google Scholar
  10. W. Song, D. C. Markel, S. Wang, T. Shi, G. Mao, and W. Ren, “Electrospun polyvinyl alcohol-collagen-hydroxyapatite nanofibers: a biomimetic extracellular matrix for osteoblastic cells,” Nanotechnology, vol. 23, no. 11, Article ID 115101, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Zhang, J. R. Venugopal, A. El-Turki, S. Ramakrishna, B. Su, and C. T. Lim, “Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering,” Biomaterials, vol. 29, no. 32, pp. 4314–4322, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Kim, H. Lee, and J. C. Knowles, “Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly(lactic acid) for bone regeneration,” Journal of Biomedical Materials Research A, vol. 79, no. 3, pp. 643–649, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. M. I. Hassan, M. Mokhtar, N. Sultana, and T. H. Khan, “Production of hydroxyapatite(HA) nanoparticle and HA/PCL tissue engineering scaffolds for bone tissue engineering,” in Proceedings of the 2nd IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES '12), pp. 239–242, December 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. W. Y. Zhou, M. Wang, W. L. Cheung, B. C. Guo, and D. M. Jia, “Synthesis of carbonated hydroxyapatite nanospheres through nanoemulsion,” Journal of Materials Science: Materials in Medicine, vol. 19, no. 1, pp. 103–110, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Kokubo, H. Kim, and M. Kawashita, “Novel bioactive materials with different mechanical properties,” Biomaterials, vol. 24, no. 13, pp. 2161–2175, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Rai, S. H. Teoh, and K. H. Ho, “An in vitro evaluation of PCL-TCP composites as delivery systems for platelet-rich plasma,” Journal of Controlled Release, vol. 107, no. 2, pp. 330–342, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Kharaziha, M. H. Fathi, and H. Edris, “Development of novel aligned nanofibrous composite membranes for guided bone regeneration,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 24, pp. 9–20, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Wutticharoenmongkol, N. Sanchavanakit, P. Pavasant, and P. Supaphol, “Preparation and characterization of novel bone scaffolds based on electrospun polycaprolactone fibers filled with nanoparticles,” Macromolecular Bioscience, vol. 6, no. 1, pp. 70–77, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. M. V. Jose, V. Thomas, K. T. Johnson, D. R. Dean, and E. Nyairo, “Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engineering,” Acta Biomaterialia, vol. 5, no. 1, pp. 305–315, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Yang, J. G. C. Wolke, and J. A. Jansen, “Biomimetic calcium phosphate coating on electrospun poly(ε-caprolactone) scaffolds for bone tissue engineering,” Chemical Engineering Journal, vol. 137, no. 1, pp. 154–161, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Xu, F. Yang, S. Wang, and S. Ramakrishna, “In vitro study of human vascular endothelial cell function on materials with various surface roughness,” Journal of Biomedical Materials Research A, vol. 71, no. 1, pp. 154–161, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. V. Thomas, D. R. Dean, M. V. Jose, B. Mathew, S. Chowdhury, and Y. K. Vohra, “Nanostructured biocomposite scaffolds based on collagen coelectrospun with nanohydroxyapatite,” Biomacromolecules, vol. 8, no. 2, pp. 631–637, 2007. View at Publisher · View at Google Scholar · View at Scopus