Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2014 (2014), Article ID 810404, 7 pages
http://dx.doi.org/10.1155/2014/810404
Research Article

Plasma Treated High-Density Polyethylene (HDPE) Medpor Implant Immobilized with rhBMP-2 for Improving the Bone Regeneration

1Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonnam National University, Gwangju 500-757, Republic of Korea
2Department of Oral Microbiology, School of Dentistry, Chonnam National University, Gwangju 500-757, Republic of Korea

Received 16 June 2014; Accepted 1 July 2014; Published 10 July 2014

Academic Editor: Seunghan Oh

Copyright © 2014 Jin-Su Lim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Naito, T. Shinoka, D. Duncan et al., “Vascular tissue engineering: towards the next generation vascular grafts,” Advanced Drug Delivery Reviews, vol. 63, no. 4, pp. 312–323, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. M.-S. Scholz, J. P. Blanchfield, L. D. Bloom et al., “The use of composite materials in modern orthopaedic medicine and prosthetic devices: a review,” Composites Science and Technology, vol. 71, no. 16, pp. 1791–1803, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Konan and F. S. Haddad, “A clinical review of bioabsorbable interference screws and their adverse effects in anterior cruciate ligament reconstruction surgery,” The Knee, vol. 16, no. 1, pp. 6–13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. S. J. Nho, M. T. Provencher, S. T. Seroyer, and A. A. Romeo, “Bioabsorbable anchors in glenohumeral shoulder surgery,” Arthroscopy, vol. 25, no. 7, pp. 788–793, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Lasheras-Zubiate, I. Navarro-Blasco, J. M. Fernández, and J. I. Álvarez, “Effect of the addition of chitosan ethers on the fresh state properties of cement mortars,” Cement and Concrete Composites, vol. 34, no. 8, pp. 964–973, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Groeber, M. Holeiter, M. Hampel, S. Hinderer, and K. Schenke-Layland, “Skin tissue engineering—in vivo and in vitro applications,” Advanced Drug Delivery Reviews, vol. 63, no. 4, pp. 352–366, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Sokolsky-Papkov, K. Agashi, A. Olaye, K. Shakesheff, and A. J. Domb, “Polymer carriers for drug delivery in tissue engineering,” Advanced Drug Delivery Reviews, vol. 59, no. 4-5, pp. 187–206, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. S. G. J. Ng, S. A. Madill, C. F. Inkster, A. J. Maloof, and B. Leatherbarrow, “Medpor porous polyethylene implants in orbital blowout fracture repair,” Eye, vol. 15, no. 5, pp. 578–582, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. M. J. Yaremchuk, “Facial skeletal reconstruction using porous polyethylene implants,” Plastic and Reconstructive Surgery, vol. 111, no. 6, pp. 1818–1827, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Cenzi, A. Farina, L. Zuccarino, and F. Carinci, “Clinical outcome of 285 Medpor grafts used for craniofacial reconstruction,” Journal of Craniofacial Surgery, vol. 16, no. 4, pp. 526–530, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Gosau, F. G. Draenert, and S. Ihrler, “Facial augmentation with porous polyethylene (Medpor)-histological evidence of intense foreign body reaction,” Journal of Biomedical Materials Research B: Applied Biomaterials, vol. 87, no. 1, pp. 83–87, 2008. View at Google Scholar
  12. M. L. Steen, A. C. Jordan, and E. R. Fisher, “Hydrophilic modification of polymeric membranes by low temperature H2O plasma treatment,” Journal of Membrane Science, vol. 204, no. 1-2, pp. 341–357, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. J. H. Liu, H. L. Jen, and Y. C. Chung, “Surface modification of polyethylene membranes using phosphoryl choline derivatives and their platelet compatibility,” Journal of Applied Polymer Science, vol. 74, no. 12, pp. 2947–2954, 1999. View at Publisher · View at Google Scholar
  14. K. G. Neoh, X. Hu, D. Zheng, and E. T. Kang, “Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces,” Biomaterials, vol. 33, no. 10, pp. 2813–2822, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. S. E. Kim, S. Song, Y. P. Yun et al., “The effect of immobilization of heparin and bone morphogenic protein-2 (BMP-2) to titanium surfaces on inflammation and osteoblast function,” Biomaterials, vol. 32, no. 2, pp. 366–373, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Shen, X. Hu, F. Yang, J. Bei, and S. Wang, “The bioactivity of rhBMP-2 immobilized poly(lactide-co-glycolide) scaffolds,” Biomaterials, vol. 30, no. 18, pp. 3150–3157, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S. W. Kang, J. S. Kim, K. S. Park et al., “Surface modification with fibrin/hyaluronic acid hydrogel on solid-free form-based scaffolds followed by BMP-2 loading to enhance bone regeneration,” Bone, vol. 48, no. 2, pp. 298–306, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. S. K. Lan Levengood, S. J. Polak, M. J. Poellmann et al., “The effect of BMP-2 on micro- and macroscale osteointegration of biphasic calcium phosphate scaffolds with multiscale porosity,” Acta Biomaterialia, vol. 6, no. 8, pp. 3283–3291, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. B. H. Kim, S. W. Myung, S. C. Jung, and Y. M. Ko, “Plasma surface modification for immobilization of bone morphogenic protein-2on polycaprolactone scaffolds,” Japanese Journal of Applied Physics, vol. 52, no. 11, pp. 11NF01-1–11NF01-6, 2013. View at Google Scholar
  20. J. M. Goddard and J. H. Hotchkiss, “Polymer surface modification for the attachment of bioactive compounds,” Progress in Polymer Science, vol. 32, no. 7, pp. 698–725, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Yoshida, K. Hagiwara, T. Hasebe, and A. Hotta, “Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release,” Surface and Coatings Technology, vol. 233, pp. 99–107, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. D. A. Puleo, R. A. Kissling, and M.-S. Sheu, “A technique to immobilize bioactive proteins, including bone morphogenetic protein-4 (BMP-4), on titanium alloy,” Biomaterials, vol. 23, no. 9, pp. 2079–2087, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Detomaso, R. Gristina, G. S. Senesi, R. d'Agostino, and P. Favia, “Stable plasma-deposited acrylic acid surfaces for cell culture applications,” Biomaterials, vol. 26, no. 18, pp. 3831–3841, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Ricciardi, R. Castagna, S. M. Severino et al., “Surface functionalization by poly-acrylic acid plasma-polymerized films for microarray DNA diagnostics,” Surface and Coatings Technology, vol. 207, pp. 389–399, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Swaraj, U. Oran, A. Lippitz, J. F. Friedrich, and W. E. S. Unger, “Study of influence of external plasma parameters on plasma polymerised films prepared from organic molecules (acrylic acid, allyl alcohol, allyl amine) using XPS and NEXAFS,” Surface and Coatings Technology, vol. 200, no. 1–4, pp. 494–497, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. S.-C. Jung, K. Lee, and B.-H. Kim, “Biocompatibility of plasma polymerized sandblasted large grit and acid titanium surface,” Thin Solid Films, vol. 521, pp. 150–154, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Rivolo, S. M. Severino, S. Ricciardi, F. Frascella, and F. Geobaldo, “Protein immobilization on nanoporous silicon functionalized by RF activated plasma polymerization of Acrylic Acid,” Journal of Colloid Interface Science, vol. 416, pp. 73–80, 2014. View at Publisher · View at Google Scholar
  28. Y. N. Shin, B. S. Kim, H. H. Ahn et al., “Adhesion comparison of human bone marrow stem cells on a gradient wettable surface prepared by corona treatment,” Applied Surface Science, vol. 255, no. 2, pp. 293–296, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. E. A. Vogler, “Structure and reactivity of water at biomaterial surfaces,” Advances in Colloid and Interface Science, vol. 74, no. 1–3, pp. 69–117, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. Z. Ma, Z. Mao, and C. Gao, “Surface modification and property analysis of biomedical polymers used for tissue engineering,” Colloids and Surfaces B: Biointerfaces, vol. 60, no. 2, pp. 137–157, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. R. A. Meyers, Molecular Biology and Biotechnology: A Comprehensive Desk Reference, Wiley-VCH, 1995.
  32. J. Kong and S. Yu, “Fourier transform infrared spectroscopic analysis of protein secondary structures,” Acta Biochimica et Biophysica Sinica, vol. 39, no. 8, pp. 549–559, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Schwartz, S. Sofia, and W. Friess, “Integrity and stability studies of precipitated rhBMP-2 microparticles with a focus on ATR-FTIR measurements,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 63, no. 3, pp. 241–248, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. D. B. Haddow, D. A. Steele, R. D. Short, R. A. Dawson, and S. MacNeil, “Plasma-polymerized surfaces for culture of human keratinocytes and transfer of cells to an in vitro wound-bed model,” Journal of Biomedical Materials Research A, vol. 64, no. 1, pp. 80–87, 2003. View at Google Scholar · View at Scopus
  35. R. Daw, S. Candan, A. J. Beck et al., “Plasma copolymer surfaces of acrylic acid/1,7 octadiene: surface characterisation and the attachment of ROS 17/2.8 osteoblast-like cells,” Biomaterials, vol. 19, no. 19, pp. 1717–1725, 1998. View at Publisher · View at Google Scholar · View at Scopus
  36. O. Jeon, S. J. Song, S. Kang, A. J. Putnam, and B. Kim, “Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(l-lactic-co-glycolic acid) scaffold,” Biomaterials, vol. 28, no. 17, pp. 2763–2771, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. J. van den Dolder, A. J. E. De Ruijter, P. H. M. Spauwen, and J. A. Jansen, “Observations on the effect of BMP-2 on rat bone marrow cells cultured on titanium substrates of different roughness,” Biomaterials, vol. 24, no. 11, pp. 1853–1860, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. I. Chung, K. M. Ahn, S. H. Jeon, S. Y. Lee, J. H. Lee, and G. Tae, “Enhanced bone regeneration with BMP-2 loaded functional nanoparticle-hydrogel complex,” Journal of Controlled Release, vol. 121, no. 1-2, pp. 91–99, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Nagao, N. Tachikawa, T. Miki et al., “Effect of recombinant human bone morphogenetic protein-2 on bone formation in alveolar ridge defects in dogs,” International Journal of Oral and Maxillofacial Surgery, vol. 31, no. 1, pp. 66–72, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. E. Sardella, L. Detomaso, R. Gristina et al., “Nano-structured cell-adhesive and cell-repulsive plasma-deposited coatings: chemical and topographical effects on keratinocyte adhesion,” Plasma Processes and Polymers, vol. 5, no. 6, pp. 540–551, 2008. View at Publisher · View at Google Scholar · View at Scopus