Journal of Nanomaterials
Volume 2018 (2018), Article ID 6274072, 8 pages
https://doi.org/10.1155/2018/6274072
Rapid Adsorption of Proinflammatory Cytokines by Graphene Nanoplatelets and Their Composites for Extracorporeal Detoxification
1School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
2Department of Materials Science & Engineering and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA 19104, USA
3Chemistry Division, U.S. Naval Research Laboratory, Washington, DC 20375, USA
4Department of Chemistry and Department of Materials Science & Engineering, Missouri University of Science & Technology, Rolla, MO 65409, USA
Correspondence should be addressed to Susan Sandeman; ku.ca.nothgirb@namednas.s
Received 19 July 2017; Revised 11 January 2018; Accepted 22 January 2018; Published 21 February 2018
Academic Editor: Renyun Zhang
Copyright © 2018 Yishan Zheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Linked References
- V. Y. Dombrovskiy, A. A. Martin, J. Sunderram, and H. L. Paz, “Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003,” Critical Care Medicine, vol. 35, no. 5, pp. 1244–1250, 2007. View at Publisher · View at Google Scholar · View at Scopus
- A. R. Bedford Russell, “Neonatal sepsis,” Paediatrics and Child Health (United Kingdom), vol. 25, no. 6, pp. 271–275, 2015. View at Publisher · View at Google Scholar · View at Scopus
- B. Tiru, E. K. DiNino, A. Orenstein et al., “The economic and humanistic burden of severe sepsis,” PharmacoEconomics, vol. 33, no. 9, pp. 925–937, 2015. View at Publisher · View at Google Scholar · View at Scopus
- N. K. J. Adhikari, R. A. Fowler, S. Bhagwanjee, and G. D. Rubenfeld, “Critical care and the global burden of critical illness in adults,” The Lancet, vol. 376, no. 9749, pp. 1339–1346, 2010. View at Publisher · View at Google Scholar · View at Scopus
- D. C. Angus and T. van der Poll, “Severe sepsis and septic shock,” The New England Journal of Medicine, vol. 369, no. 9, pp. 840–851, 2013. View at Publisher · View at Google Scholar · View at Scopus
- K. Baghel, R. N. Srivastava, A. Chandra et al., “TNF-α, IL-6, and IL-8 cytokines and their association with TNF-α-308 G/A polymorphism and postoperative sepsis,” Journal of Gastrointestinal Surgery, vol. 18, no. 8, pp. 1486–1494, 2014. View at Publisher · View at Google Scholar · View at Scopus
- B. G. Chousterman, F. K. Swirski, and G. F. Weber, “Cytokine storm and sepsis disease pathogenesis,” Seminars in Immunopathology, vol. 39, no. 5, pp. 517–528, 2017. View at Publisher · View at Google Scholar · View at Scopus
- A. M. Taeb, M. H. Hooper, and P. E. Marik, “Sepsis: Current definition, pathophysiology, diagnosis, and management,” Nutrition in Clinical Practice, vol. 32, no. 3, pp. 296–308, 2017. View at Publisher · View at Google Scholar · View at Scopus
- H. Aoki, M. Kodama, T. Tani, and K. Hanasawa, “Treatment of sepsis by extracorporeal elimination of endotoxin using polymyxin B-inimobilized fiber,” The American Journal of Surgery, vol. 167, no. 4, pp. 412–417, 1994. View at Publisher · View at Google Scholar · View at Scopus
- C. Ronco and D. J. Klein, “Polymyxin B hemoperfusion: A mechanistic perspective,” Critical Care, vol. 18, no. 3, article no. 309, 2014. View at Publisher · View at Google Scholar · View at Scopus
- T. Terayama, K. Yamakawa, Y. Umemura, M. Aihara, and S. Fujimi, “Polymyxin B hemoperfusion for sepsis and septic shock: A systematic review and meta-analysis,” Surgical Infections, vol. 18, no. 3, pp. 225–233, 2017. View at Publisher · View at Google Scholar · View at Scopus
- T. Taniguchi, F. Hirai, Y. Takemoto et al., “A novel adsorbent of circulating bacterial toxins and cytokines: The effect of direct hemoperfusion with CTR column for the treatment of experimental endotoxemia,” Critical Care Medicine, vol. 34, no. 3, pp. 800–806, 2006. View at Publisher · View at Google Scholar · View at Scopus
- K. Kogelmann, D. Jarczak, M. Scheller, and M. Drüner, “Hemoadsorption by CytoSorb in septic patients: a case series,” Critical Care, vol. 21, no. 1, 2017. View at Publisher · View at Google Scholar
- S. Inoue, K. Kiriyama, Y. Hatanaka, and H. Kanoh, “Adsorption properties of an activated carbon for 18 cytokines and HMGB1 from inflammatory model plasma,” Colloids and Surfaces B: Biointerfaces, vol. 126, pp. 58–62, 2015. View at Publisher · View at Google Scholar · View at Scopus
- S. Yachamaneni, G. Yushin, S.-H. Yeon et al., “Mesoporous carbide-derived carbon for cytokine removal from blood plasma,” Biomaterials, vol. 31, no. 18, pp. 4789–4794, 2010. View at Publisher · View at Google Scholar · View at Scopus
- V. Presser, S. Yeon, C. Vakifahmetoglu et al., “Hierarchical porous carbide-derived carbons for the removal of cytokines from blood plasma,” Advanced Healthcare Materials, vol. 1, no. 6, pp. 682–682, 2012. View at Publisher · View at Google Scholar
- S. R. Sandeman, C. A. Howell, S. V. Mikhalovsky et al., “Inflammatory cytokine removal by an activated carbon device in a flowing system,” Biomaterials, vol. 29, no. 11, pp. 1638–1644, 2008. View at Publisher · View at Google Scholar · View at Scopus
- S. V. Mikhalovsky, “Emerging technologies in extracorporeal treatment: Focus on adsorption,” Perfusion, vol. 18, no. 1, pp. 47–54, 2003. View at Publisher · View at Google Scholar · View at Scopus
- V. M. Gun'Ko, V. V. Turov, O. P. Kozynchenko et al., “Activation and structural and adsorption features of activated carbons with highly developed micro-, meso- and macroporosity,” Adsorption, vol. 17, no. 3, pp. 453–460, 2011. View at Publisher · View at Google Scholar · View at Scopus
- X. Li, S. Biswas, and L. T. Drzal, “High temperature vacuum annealing and hydrogenation modification of exfoliated graphite nanoplatelets,” Journal of Engineering (United States), vol. 2013, Article ID 638576, 2013. View at Publisher · View at Google Scholar · View at Scopus
- L. T. Drzal, Graphene Nanoplatelets: A Muli-Functional Nanomaterial Additive for Polymers and Composites, I. XG Sciences, 2015.
- S. Y. Choi, M. Mamak, E. Cordola, and U. Stadler, “Large scale production of high aspect ratio graphite nanoplatelets with tunable oxygen functionality,” Journal of Materials Chemistry, vol. 21, no. 13, pp. 5142–5147, 2011. View at Publisher · View at Google Scholar · View at Scopus
- A. V. Melezhyk and A. G. Tkachev, “Synthesis of graphene nanoplatelets from peroxosulfate graphite intercalation compounds,” Nanosystems: Physics, Chemistry, Mathematics, vol. 5, no. 2, p. 13, 2014. View at Google Scholar
- W. Shen, S. Wen, N. Cao et al., “Expanded graphite - a new kind of biomedical material,” Carbon, vol. 37, no. 2, pp. 356–358, 1999. View at Publisher · View at Google Scholar · View at Scopus
- S. Hirn, M. Semmler-Behnke, C. Schleh et al., “Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 77, no. 3, pp. 407–416, 2011. View at Publisher · View at Google Scholar · View at Scopus
- N. Kurantowicz, B. Strojny, E. Sawosz et al., “Biodistribution of a high dose of diamond, graphite, and graphene oxide nanoparticles after multiple intraperitoneal injections in rats,” Nanoscale Research Letters, vol. 10, no. 1, article no. 398, 2015. View at Publisher · View at Google Scholar · View at Scopus
- Y. Xue, T. Zhang, B. Zhang, F. Gong, Y. Huang, and M. Tang, “Cytotoxicity and apoptosis induced by silver nanoparticles in human liver HepG2 cells in different dispersion media,” Journal of Applied Toxicology, vol. 36, no. 3, pp. 352–360, 2016. View at Publisher · View at Google Scholar · View at Scopus
- B. K. Gaiser, S. Hirn, A. Kermanizadeh et al., “Effects of silver nanoparticles on the liver and hepatocytes in vitro,” Toxicological Sciences, vol. 131, no. 2, pp. 537–547, 2013. View at Publisher · View at Google Scholar · View at Scopus
- S. Osswald, J. Chmiola, and Y. Gogotsi, “Structural evolution of carbide-derived carbons upon vacuum annealing,” Carbon, vol. 50, no. 13, pp. 4880–4886, 2012. View at Publisher · View at Google Scholar · View at Scopus
- B. R. Glick, T. L. Delovitch, and C. L. Patten, “9.1.3 tumor necrosis factor,” in Medical Biotechnology, American Society for Microbiology (ASM).
- P. Heering, S. Morgera, F. J. Schmitz et al., “Cytokine removal and cardiovascular hemodynamics in septic patients with continuous venovenous hemofiltration,” Intensive Care Medicine, vol. 23, no. 3, pp. 288–296, 1997. View at Publisher · View at Google Scholar · View at Scopus
- S. Harm, F. Gabor, and J. Hartmann, “Characterization of adsorbents for cytokine removal from blood in an in vitro model,” Journal of Immunology Research, vol. 2015, Article ID 484736, 2015. View at Publisher · View at Google Scholar · View at Scopus
- G. Yushin, E. N. Hoffman, M. W. Barsoum et al., “Mesoporous carbide-derived carbon with porosity tuned for efficient adsorption of cytokines,” Biomaterials, vol. 27, no. 34, pp. 5755–5762, 2006. View at Publisher · View at Google Scholar · View at Scopus
- C. A. Howell, S. R. Sandeman, G. J. Phillips et al., “Nanoporous activated carbon beads and monolithic columns as effective hemoadsorbents for inflammatory cytokines,” The International Journal of Artificial Organs, vol. 36, no. 9, pp. 624–632, 2013. View at Publisher · View at Google Scholar · View at Scopus
- S. R. Tennison et al., “Carbon and its use in blood cleansing applications,” US Pat., 20130072845 A1, 2013.
- S. R. Sandeman, Y. Zheng, G. C. Ingavle et al., “A haemocompatible and scalable nanoporous adsorbent monolith synthesised using a novel lignin binder route to augment the adsorption of poorly removed uraemic toxins in haemodialysis,” Biomedical Materials, vol. 12, no. 3, Article ID 035001, 2017. View at Publisher · View at Google Scholar · View at Scopus
- S. R. Sandeman, C. A. Howell, G. J. Phillips et al., “An adsorbent monolith device to augment the removal of uraemic toxins during haemodialysis,” Journal of Materials Science: Materials in Medicine, vol. 25, no. 6, pp. 1589–1597, 2014. View at Publisher · View at Google Scholar · View at Scopus
- S. R. Mitzner, J. Stange, S. Klammt, S. Koball, H. Hickstein, and E. C. Reisinger, “Albumin dialysis MARS: Knowledge from 10 years of clinical investigation,” ASAIO Journal, vol. 55, no. 5, pp. 498–502, 2009. View at Publisher · View at Google Scholar · View at Scopus
- M. Oppert, S. Rademacher, K. Petrasch, and A. Jörres, “Extracorporeal liver support therapy with prometheus in patients with liver failure in the intensive care unit,” Therapeutic Apheresis and Dialysis, vol. 13, no. 5, pp. 426–430, 2009. View at Publisher · View at Google Scholar · View at Scopus