Table of Contents Author Guidelines Submit a Manuscript
Journal of Oncology
Volume 2010 (2010), Article ID 821717, 12 pages
Research Article

Loss of miR-200c: A Marker of Aggressiveness and Chemoresistance in Female Reproductive Cancers

Department of Pathology, Denver School of Medicine, University of Colorado, Aurora CO, 80045, USA

Received 1 June 2009; Accepted 26 September 2009

Academic Editor: Phillip J. Buckhaults

Copyright © 2010 Dawn R. Cochrane et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We focus on unique roles of miR-200c in breast, ovarian, and endometrial cancers. Members of the miR-200 family target ZEB1, a transcription factor which represses E-cadherin and other genes involved in polarity. We demonstrate that the double negative feedback loop between miR-200c and ZEB1 is functional in some, but not all cell lines. Restoration of miR-200c to aggressive cancer cells causes a decrease in migration and invasion. These effects are independent of E-cadherin status. Additionally, we observe that restoration of miR-200c to ovarian cancer cells causes a decrease in adhesion to laminin. We have previously reported that reintroduction of miR-200c to aggressive cells that lack miR-200c expression restores sensitivity to paclitaxel. We now prove that this ability is a result of direct targeting of class III beta-tubulin (TUBB3). Introduction of a TUBB3 expression construct lacking the miR-200c target site into cells transfected with miR-200c mimic results in no change in sensitivity to paclitaxel. Lastly, we observe a decrease in proliferation in cells transfected with miR-200c mimic, and cells where ZEB1 is knocked down stably, demonstrating that the ability of miR-200c to enhance sensitivity to paclitaxel is not due to an increased proliferation rate.