Table of Contents Author Guidelines Submit a Manuscript
Journal of Oncology
Volume 2012 (2012), Article ID 413256, 9 pages
http://dx.doi.org/10.1155/2012/413256
Clinical Study

Salivary Protein Profiles among HER2/neu-Receptor-Positive and -Negative Breast Cancer Patients: Support for Using Salivary Protein Profiles for Modeling Breast Cancer Progression

Department of Diagnostic Sciences, UTHSC, Dental Branch, Behavioral and Biomedical Sciences Building, Rm. 5322, Houston, TX 77054, USA

Received 25 October 2011; Accepted 17 January 2012

Academic Editor: Esra Gunduz

Copyright © 2012 Charles F. Streckfus et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. C. Wolff, M. E. H. Hammond, J. N. Schwartz et al., “American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer,” Journal of Clinical Oncology, vol. 25, no. 1, pp. 118–145, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. M. E. Hammond, D. F. Hayes, and A. C. Wolff, “Clinical Notice for American Society of Clinical Oncology-College of American Pathologists guideline recommendations on ER/PgR and HER2 testing in breast cancer,” Journal of Clinical Oncology, vol. 29, no. 15, p. e458, 2011. View at Publisher · View at Google Scholar
  3. J. S. Ross and J. A. Fletcher, “The HER-2/neu oncogene in breast cancer: prognostic factor, predictive factor, and target for therapy,” Stem Cells, vol. 16, no. 6, pp. 413–428, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Koscielny, P. Terrier, M. Spielmann, and J. C. Delarue, “Prognostic importance of low c-erbB2 expression in breast tumors,” Journal of the National Cancer Institute, vol. 90, no. 9, p. 712, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. W. Y. Huang, B. Newman, R. C. Millikan et al., “Risk of breast cancer according to the status of HER-2/neu oncogene amplification,” Cancer Epidemiology Biomarkers & Prevention, vol. 9, no. 1, pp. 65–71, 2000. View at Google Scholar · View at Scopus
  6. L. R. Howe and P. H. Brown, “Targeting the HER/EGFR/ErbB family to prevent breast cancer,” Cancer Prevention Research, vol. 4, no. 8, pp. 1149–1157, 2011. View at Publisher · View at Google Scholar
  7. J. Baselga, “Phase I and II clinical trials of trastuzumab,” Annals of Oncology, vol. 12, supplement 1, pp. S49–S55, 2001. View at Google Scholar · View at Scopus
  8. S. Ménard, P. Valagussa, S. Pilotti et al., “Response to cyclophosphamide, methotrexate, and fluorouracil in lymph node-positive breast cancer according to HER2 overexpression and other tumor biologic variables,” Journal of Clinical Oncology, vol. 19, no. 2, pp. 329–335, 2001. View at Google Scholar · View at Scopus
  9. C. F. Streckfus, O. Mayorga-Wark, D. Arreola, C. Edwards, L. Bigler, and W. P. Dubinsky, “Breast cancer related proteins are present in saliva and are modulated secondary to ductal carcinoma in situ of the breast,” Cancer Investigation, vol. 26, no. 2, pp. 159–167, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. C. F. Streckfus, K. A. Storthz, L. Bigler, and W. P. Dubinsky, “A comparison of the proteomic expression in pooled saliva specimens from individuals diagnosed with ductal carcinoma of the breast with and without lymph node involvement,” Journal of Oncology, vol. 2009, Article ID 737619, 11 pages, 2009. View at Publisher · View at Google Scholar
  11. Y. M. Kulkarni, V. Suarez, and D. J. Klinke, “Inferring predominant pathways in cellular models of breast cancer using limited sample proteomic profiling,” BMC Cancer, vol. 10, article 291, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. S. J. Pitteri, K. S. Kelly-Spratt, K. E. Gurley et al., “Tumor microenvironment-derived proteins dominate the plasma proteome response during breast cancer induction and progression,” Cancer Research, vol. 71, no. 15, pp. 5090–5100, 2011. View at Publisher · View at Google Scholar
  13. S. L. Wu, W. S. Hancock, G. G. Goodrich, and S. T. Kunitake, “An approach to the proteomic analysis of a breast cancer cell line (SKBR-3),” Proteomics, vol. 3, no. 6, pp. 1037–1046, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Charafe-Jauffret, C. Ginestier, F. Monville et al., “Gene expression profiling of breast cell lines identifies potential new basal markers,” Oncogene, vol. 25, no. 15, pp. 2273–2284, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. R. A. Harris, A. Yang, R. C. Stein et al., “Cluster analysis of an extensive human breast cancer cell line protein expression map database,” Proteomics, vol. 2, no. 2, pp. 212–223, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Zhang, L. K. Tai, L. L. Wong, L. L. Chiu, S. K. Sethi, and E. S. C. Koay, “Proteomic study reveals that proteins involved in metabolic and detoxification pathways are highly expressed in HER-2/neu-positive breast cancer,” Molecular & Cellular Proteomics, vol. 4, no. 11, pp. 1686–1696, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Kao, K. Salari, M. Bocanegra et al., “Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery,” PLoS ONE, vol. 4, no. 7, Article ID e6146, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Vargo-Gogola and J. M. Rosen, “Modelling breast cancer: one size does not fit all,” Nature Reviews Cancer, vol. 7, no. 9, pp. 659–672, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Hennighausen, “Mouse models for breast cancer,” Breast Cancer Research, vol. 2, no. 1, pp. 2–7, 2000. View at Publisher · View at Google Scholar · View at Scopus