Table of Contents Author Guidelines Submit a Manuscript
Journal of Oncology
Volume 2012, Article ID 635614, 19 pages
http://dx.doi.org/10.1155/2012/635614
Review Article

The Insulin and IGF-I Pathway in Endocrine Glands Carcinogenesis

Endocrinology, Department of Health Sciences, Magna Græcia University of Catanzaro, Campus Universitario, Località Germaneto, 88100 Catanzaro, Italy

Received 3 May 2012; Accepted 20 June 2012

Academic Editor: Marialuisa Appetecchia

Copyright © 2012 Roberta Malaguarnera et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. E. Nikiforov and M. N. Nikiforova, “Molecular genetics and diagnosis of thyroid cancer,” Nature Reviews Endocrinology, vol. 7, pp. 569–580.
  2. D. Russo, F. Arturi, H. G. Suarez et al., “Thyrotropin receptor gene alterations in thyroid hyperfunctioning adenomas,” Journal of Clinical Endocrinology and Metabolism, vol. 81, no. 4, pp. 1548–1551, 1996. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Parma, L. Duprez, J. van Sande et al., “Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas,” Nature, vol. 365, no. 6447, pp. 649–651, 1993. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Biondi, S. Filetti, and M. Schlumberger, “Thyroid-hormone therapy and thyroid cancer: a reassessment,” Nature clinical practice. Endocrinology & metabolism, vol. 1, no. 1, pp. 32–40, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Milazzo, G. L. La Rosa, R. Catalfamo, R. Vigneri, and A. Belfiore, “Effect of TSH in human thyroid cells: evidence for both mitogenic and antimitogenic effects,” Journal of Cellular Biochemistry, vol. 49, no. 3, pp. 231–238, 1992. View at Publisher · View at Google Scholar · View at Scopus
  6. J. E. Dumont, F. Lamy, P. Roger, and C. Maenhaut, “Physiological and pathological regulation of thyroid cell proliferation and differentiation by thyrotropin and other factors,” Physiological Reviews, vol. 72, no. 3, pp. 667–697, 1992. View at Google Scholar · View at Scopus
  7. A. Ciampolillo, C. De Tullio, and F. Giorgino, “The IGF-I/IGF-I receptor pathway: implications in the pathophysiology of thyroid cancer,” Current Medicinal Chemistry, vol. 12, no. 24, pp. 2881–2891, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. B. F. A. M. van der Laan, J. L. Freeman, and S. L. Asa, “Expression of growth factors and growth factor receptors in normal and tumorous human thyroid tissues,” Thyroid, vol. 5, no. 1, pp. 67–73, 1995. View at Google Scholar · View at Scopus
  9. R. Malaguarnera, F. Frasca, A. Garozzo et al., “Insulin receptor isoforms and insulin-like growth factor receptor in human follicular cell precursors from papillary thyroid cancer and normal thyroid,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 3, pp. 766–774, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Saji and L. D. Kohn, “Insulin and insulin-like growth factor-I inhibit thyrotropin-increased iodide transport in serum-depleted FRTL-5 rat thyroid cells: modulation of adenosine 3',5'-monophosphate signal action,” Endocrinology, vol. 128, no. 2, pp. 1136–1143, 1991. View at Google Scholar · View at Scopus
  11. P. Santisteban, L. D. Kohn, and R. di Lauro, “Thyroglobulin gene expression is regulated by insulin and insulin-like growth factor I, as well as thyrotropin, in FRTL-5 thyroid cells,” Journal of Biological Chemistry, vol. 262, no. 9, pp. 4048–4052, 1987. View at Google Scholar · View at Scopus
  12. R. Zarrilli, S. Formisano, and B. Di Jeso, “Hormonal regulation of thyroid peroxidase in normal and transformed rat thyroid cells,” Molecular Endocrinology, vol. 4, no. 1, pp. 39–45, 1990. View at Google Scholar · View at Scopus
  13. P. Santisteban, A. Acebron, M. Polycarpou-Schwarz, and R. Di Lauro, “Insulin and insulin-like growth factor I regulate a thyroid-specific nuclear protein that binds to the thyroglobulin promoter,” Molecular Endocrinology, vol. 6, no. 8, pp. 1310–1317, 1992. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Aza-Blanc, R. Di Lauro, and P. Santisteban, “Identification of a cis-regulatory element and a thyroid-specific nuclear factor mediating the hormonal regulation of rat thyroid peroxidase promoter activity,” Molecular Endocrinology, vol. 7, no. 10, pp. 1297–1306, 1993. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Civitareale, R. Lonigro, A. J. Sinclair, and R. Di Lauro, “A thyroid-specific nuclear protein essential for tissue-specific expression of the thyroglobulin promoter,” EMBO Journal, vol. 8, no. 9, pp. 2537–2542, 1989. View at Google Scholar · View at Scopus
  16. H. Francis-Lang, M. Zannini, M. de Felice, M. T. Berlingieri, A. Fusco, and R. Di Lauro, “Multiple mechanisms of interference between transformation and differentiation in thyroid cells,” Molecular and Cellular Biology, vol. 12, no. 12, pp. 5793–5800, 1992. View at Google Scholar · View at Scopus
  17. L. Ortiz, M. Zannini, R. D. Lauro, and P. Santisteban, “Transcriptional control of the forkhead thyroid transcription factor TTF-2 by thyrotropin, insulin, and insulin-like growth factor I,” Journal of Biological Chemistry, vol. 272, no. 37, pp. 23334–23339, 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Masui and L. D. Garren, “Inhibition of replication in functional mouse adrenal tumor cells by adrenocorticotropic hormone mediated by adenosine 3':5'-cyclic monophosphate,” Proceedings of the National Academy of Sciences of the United States of America, vol. 68, no. 12, pp. 3206–3210, 1971. View at Google Scholar · View at Scopus
  19. E. R. Weidman and G. N. Gill, “Differential effects of ACTH or 8 Br cAMP on growth and replication in a functional adrenal tumor cell line,” Journal of Cellular Physiology, vol. 90, no. 1, pp. 91–104, 1977. View at Google Scholar · View at Scopus
  20. A. M. Morera and J. M. Saez, “In vitro mitogenic and steroidogenic effects of ACTH analogues on an adrenal tumor cell line (Y-1),” Experimental Cell Research, vol. 127, no. 2, pp. 446–451, 1980. View at Google Scholar · View at Scopus
  21. J. Ramachandran and A. T. Suyama, “Inhibition of replication of normal adrenocortical cells in culture by adrenocorticotropin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 72, no. 1, pp. 113–117, 1975. View at Google Scholar · View at Scopus
  22. A. C. Latronico, M. Reincke, B. B. Mendonca et al., “No evidence for oncogenic mutations in the adrenocorticotropin receptor gene in human adrenocortical neoplasms,” Journal of Clinical Endocrinology and Metabolism, vol. 80, no. 3, pp. 875–877, 1995. View at Google Scholar · View at Scopus
  23. K. Light, P. J. Jenkins, A. Weber et al., “Are activating mutations of the adrenocorticotropin receptor involved in adrenal cortical neoplasia?” Life Sciences, vol. 56, no. 18, pp. 1523–1527, 1995. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Reincke, P. Mora, F. Beuschlein, W. Arlt, G. P. Chrousos, and B. Allolio, “Deletion of the adrenocorticotropin receptor gene in human adrenocortical tumors: implications for tumorigenesis,” Journal of Clinical Endocrinology and Metabolism, vol. 82, no. 9, pp. 3054–3058, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. L. S. Kirschner, “Signaling pathways in adrenocortical cancer,” Annals of the New York Academy of Sciences, vol. 968, pp. 222–239, 2002. View at Google Scholar · View at Scopus
  26. D. W. Cramer, G. B. Hutchison, and W. R. Welch, “Determinants of ovarian cancer risk. I. Reproductive experiences and family history,” Journal of the National Cancer Institute, vol. 71, no. 4, pp. 711–716, 1983. View at Google Scholar · View at Scopus
  27. D. W. Cramer and W. R. Welch, “Determinants of ovarian cancer risk. II. Inferences regarding pathogenesis,” Journal of the National Cancer Institute, vol. 71, no. 4, pp. 717–721, 1983. View at Google Scholar · View at Scopus
  28. B. V. Stadel, “The etiology and prevention of ovarian cancer,” American Journal of Obstetrics and Gynecology, vol. 123, no. 7, pp. 772–774, 1975. View at Google Scholar · View at Scopus
  29. S. V. Nicosia, J. H. Johnson, and E. J. Streibel, “Growth characteristics of rabbit ovarian mesothelial (surface epithelial) cells,” International Journal of Gynecological Pathology, vol. 4, pp. 58–74, 1985. View at Google Scholar
  30. W. Zheng, J. J. Lu, F. Luo et al., “Ovarian epithelial tumor growth promotion by follicle-stimulating hormone and inhibition of the effect by luteinizing hormone,” Gynecologic Oncology, vol. 76, no. 1, pp. 80–88, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. L. J. Spicer and P. Y. Aad, “Insulin-like growth factor (IGF) 2 stimulates steroidogenesis and mitosis of bovine granulosa cells through the IGF1 receptor: role of follicle-stimulating hormone and IGF2 receptor,” Biology of Reproduction, vol. 77, pp. 18–27, 2007. View at Google Scholar
  32. J. Zhou, T. R. Kumar, M. M. Matzuk, and C. Bondy, “Insulin-like growth factor I regulates gonadotropin responsiveness in the murine ovary,” Molecular Endocrinology, vol. 11, no. 13, pp. 1924–1933, 1997. View at Google Scholar · View at Scopus
  33. A. Belfiore, G. Pandini, V. Vella, S. Squatrito, and R. Vigneri, “Insulin/IGF-I hybrid receptors play a major role in IGF-I signaling in thyroid cancer,” Biochimie, vol. 81, no. 4, pp. 403–407, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Belfiore, F. Frasca, G. Pandini, L. Sciacca, and R. Vigneri, “Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease,” Endocrine Reviews, vol. 30, no. 6, pp. 586–623, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Rajaram, D. J. Baylink, and S. Mohan, “Insulin-like growth factor-binding proteins in serum and other biological fluids: regulation and functions,” Endocrine Reviews, vol. 18, no. 6, pp. 801–831, 1997. View at Publisher · View at Google Scholar · View at Scopus
  36. E. J. Gallagher and D. LeRoith, “Minireview: IGF, insulin, and cancer,” Endocrinology, vol. 152, no. 7, pp. 2546–2551, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. V. Papa, V. Pezzino, A. Costantino et al., “Elevated insulin receptor content in human breast cancer,” Journal of Clinical Investigation, vol. 86, no. 5, pp. 1503–1510, 1990. View at Google Scholar · View at Scopus
  38. F. Frasca, G. Pandini, P. Scalia et al., “Insulin receptor isoform A, a newly recognized, high-affinity insulin- like growth factor II receptor in fetal and cancer cells,” Molecular and Cellular Biology, vol. 19, no. 5, pp. 3278–3288, 1999. View at Google Scholar · View at Scopus
  39. R. Malaguarnera, A. Sacco, C. Voci, G. Pandini, R. Vigneri, and A. Belfiore, “Proinsulin binds with high affinity the insulin receptor isoform A and predominantly activates the mitogenic pathway,” Endocrinology, vol. 153, no. 5, pp. 2152–2163, 2012. View at Publisher · View at Google Scholar
  40. C. Hernández-Sánchez, A. Mansilla, E. J. de la Rosa, and F. de Pablo, “Proinsulin in development: new roles for an ancient prohormone,” Diabetologia, vol. 49, no. 6, pp. 1142–1150, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. D. LeRoith and C. T. Roberts Jr., “The insulin-like growth factor system and cancer,” Cancer Letters, vol. 195, no. 2, pp. 127–137, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Morrione, T. DeAngelis, and R. Baserga, “Failure of the bovine papillomavirus to transform mouse embryo fibroblasts with a targeted disruption of the insulin-like growth factor I receptor genes,” Journal of Virology, vol. 69, no. 9, pp. 5300–5303, 1995. View at Google Scholar · View at Scopus
  43. C. Sell, G. Dumenil, C. Deveaud et al., “Effect of a null mutation of the insulin-like growth factor I receptor gene on growth and transformation of mouse embryo fibroblasts,” Molecular and Cellular Biology, vol. 14, no. 6, pp. 3604–3612, 1994. View at Google Scholar · View at Scopus
  44. M. Kaleko, W. J. Rutter, and A. D. Miller, “Overexpression of the human insulinlike growth factor I receptor promotes ligand-dependent neoplastic transformation,” Molecular and Cellular Biology, vol. 10, no. 2, pp. 464–473, 1990. View at Google Scholar · View at Scopus
  45. G. Milazzo, F. Giorgino, G. Damante et al., “Insulin receptor expression and function in human breast cancer cell lines,” Cancer Research, vol. 52, no. 14, pp. 3924–3930, 1992. View at Google Scholar · View at Scopus
  46. F. Giorgino, A. Belfiore, G. Milazzo et al., “Overexpression of insulin receptors in fibroblast and ovary cells induces a ligand-mediated transformed phenotype,” Molecular Endocrinology, vol. 5, no. 3, pp. 452–459, 1991. View at Google Scholar · View at Scopus
  47. C. C. Mastick, H. Kato, C. T. Roberts Jr., D. LeRoith, and A. R. Saltiel, “Insulin and insulin-like growth factor-I receptors similarly stimulate deoxyribonucleic acid synthesis despite differences in cellular protein tyrosine phosphorylation,” Endocrinology, vol. 135, no. 1, pp. 214–222, 1994. View at Publisher · View at Google Scholar · View at Scopus
  48. V. Vella, G. Pandini, L. Sciacca et al., “A novel autocrine loop involving IGF-II and the insulin receptor isoform-A stimulates growth of thyroid cancer,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 1, pp. 245–254, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. T. Kamio, K. Shigematsu, K. Kawai, and H. Tsuchiyama, “Immunoreactivity and receptor expression of insulinlike growth factor I and insulin in human adrenal tumors. An immunohistochemical study of 94 cases,” American Journal of Pathology, vol. 138, no. 1, pp. 83–91, 1991. View at Google Scholar · View at Scopus
  50. E. P. Beck, P. Russo, B. Gliozzo et al., “Identification of insulin and insulin-like growth factor I, (IGF I) receptors in ovarian cancer tissue,” Gynecologic Oncology, vol. 53, pp. 196–201, 1994. View at Google Scholar
  51. G. Pillemer, H. Lugasi-Evgi, G. Scharovsky, and D. Naor, “Insulin dependence of murine lymphoid T-cell leukemia,” International Journal of Cancer, vol. 50, no. 1, pp. 80–85, 1992. View at Google Scholar · View at Scopus
  52. M. Mamounas, D. Gervin, and E. Englesberg, “The insulin receptor as a transmitter of a mitogenic signal in Chinese hamster ovary CHO-K1 cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 23, pp. 9294–9298, 1989. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Morrione, B. Valentinis, S. Q. Xu et al., “Insulin-like growth factor II stimulates cell proliferation through the insulin receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 8, pp. 3777–3782, 1997. View at Google Scholar · View at Scopus
  54. K. R. Kalli, O. I. Falowo, L. K. Bale, M. A. Zschunke, P. C. Roche, and C. A. Conover, “Functional insulin receptors on human epithelial ovarian carcinoma cells: implications for IGF-II mitogenic signaling,” Endocrinology, vol. 143, no. 9, pp. 3259–3267, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Belfiore, “The role of insulin receptor isoforms and hybrid insulin/IGF-I receptors in human cancer,” Current Pharmaceutical Design, vol. 13, no. 7, pp. 671–686, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Ullrich, A. Gray, A. W. Tam et al., “Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity,” EMBO Journal, vol. 5, no. 10, pp. 2503–2512, 1986. View at Google Scholar · View at Scopus
  57. G. Pandini, R. Vigneri, A. Costantino et al., “Insulin and insulin-like growth factor-I (IGF-I) receptor overexpression in breast cancers leads to insulin/IGF-I hybrid receptor overexpression: evidence for a second mechanism of IGF-I signaling,” Clinical Cancer Research, vol. 5, no. 7, pp. 1935–1944, 1999. View at Google Scholar · View at Scopus
  58. C. P. Moxham and S. Jacobs, “Insulin/IGF-I receptor hybrids: a mechanism for increasing receptor diversity,” Journal of Cellular Biochemistry, vol. 48, no. 2, pp. 136–140, 1992. View at Google Scholar · View at Scopus
  59. E. M. Bailyes, B. T. Nave, M. A. Soos, S. R. Orr, A. C. Hayward, and K. Siddle, “Insulin receptor/IGF-I receptor hybrids are widely distributed in mammalian tissues: quantification of individual receptor species by selective immunoprecipitation and immunoblotting,” Biochemical Journal, vol. 327, part 1, pp. 209–215, 1997. View at Google Scholar · View at Scopus
  60. M. A. Soos, B. T. Nave, and K. Siddle, “Immunological studies of type I IGF receptors and insulin receptors: characterisation of hybrid and atypical receptor subtypes,” Advances in Experimental Medicine and Biology, vol. 343, pp. 145–157, 1993. View at Google Scholar · View at Scopus
  61. A. A. Samani and P. Brodt, “The receptor for the type I insulin-like growth factor and its ligands regulate multiple cellular functions that impact on metastasis,” Surgical Oncology Clinics of North America, vol. 10, no. 2, pp. 289–312, 2001. View at Google Scholar · View at Scopus
  62. L. S. Argetsinger, G. W. Hsu, M. G. Myers Jr., N. Billestrup, M. F. White, and C. Carter- Su, “Growth hormone, interferon-γ, and leukemia inhibitory factor promoted tyrosyl phosphorylation of insulin receptor substrate-1,” Journal of Biological Chemistry, vol. 270, no. 24, pp. 14685–14692, 1995. View at Publisher · View at Google Scholar · View at Scopus
  63. M. G. Myers Jr., T. C. Grammer, L. M. Wang et al., “Insulin receptor substrate-1 mediates phosphatidylinositol 3'-kinase and p70(S6k) signaling during insulin, insulin-like growth factor-1, and interleukin-4 stimulation,” Journal of Biological Chemistry, vol. 269, no. 46, pp. 28783–28789, 1994. View at Google Scholar · View at Scopus
  64. K. Vuori and E. Ruoslahti, “Association of insulin receptor substrate-1 with integrins,” Science, vol. 266, no. 5190, pp. 1576–1578, 1994. View at Google Scholar · View at Scopus
  65. T. Petley, K. Graff, W. Jiang, H. Yang, and J. R. Florini, “Variation among cell types in the signaling pathways by which IGF-I stimulates specific cellular responses,” Hormone and Metabolic Research, vol. 31, no. 2-3, pp. 70–76, 1999. View at Google Scholar · View at Scopus
  66. A. V. Espinosa, L. Porchia, and M. D. Ringel, “Targeting BRAF in thyroid cancer,” British Journal of Cancer, vol. 96, no. 1, pp. 16–20, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. L. Fugazzola, E. Puxeddu, N. Avenia et al., “Correlation between B-RAFV600E mutation and clinico-pathologic parameters in papillary thyroid carcinoma: data from a multicentric Italian study and review of the literature,” Endocrine-Related Cancer, vol. 13, no. 2, pp. 455–464, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Chiloeches and R. Marais, “Is BRAF the Achilles' heel of thyroid cancer?” Clinical Cancer Research, vol. 12, no. 6, pp. 1661–1664, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. N. Halachmi, S. Halachmi, E. Evron et al., “Somatic mutations of the PTEN tumor suppressor gene in sporadic follicular thyroid tumors,” Genes Chromosomes Cancer, vol. 23, pp. 239–243, 1998. View at Google Scholar
  70. P. Hou, D. Liu, Y. Shan et al., “Genetic alterations and their relationship in the phosphatidylinositol 3-kinase/Akt pathway in thyroid cancer,” Clinical Cancer Research, vol. 13, no. 4, pp. 1161–1170, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. K. J. Bussey and M. J. Demeure, “Genomic and expression profiling of adrenocortical carcinoma: application to diagnosis, prognosis and treatment,” Future Oncology, vol. 5, no. 5, pp. 641–655, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. T. Yashiro, H. Hara, N. C. Fulton et al., “Point mutations of ras genes in human adrenal cortical tumors: absence in adrenocortical hyperplasia,” World Journal of Surgery, vol. 18, no. 4, pp. 455–461, 1994. View at Google Scholar · View at Scopus
  73. S. R. Lin, J. H. Tsai, Y. C. Yang, and S. C. Lee, “Mutations of K-ras oncogene in human adrenal tumours in Taiwan,” British Journal of Cancer, vol. 77, no. 7, pp. 1060–1065, 1998. View at Google Scholar · View at Scopus
  74. V. Kotoula, E. Sozopoulos, H. Litsiou et al., “Mutational analysis of the BRAF, RAS and EGFR genes in human adrenocortical carcinomas,” Endocrine-Related Cancer, vol. 16, no. 2, pp. 565–572, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. G. Masi, E. Lavezzo, M. Iacobone, G. Favia, G. Palù, and L. Barzon, “Investigation of BRAF and CTNNB1 activating mutations in adrenocortical tumors,” Journal of Endocrinological Investigation, vol. 32, no. 7, pp. 597–600, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. G. Singer, R. J. Kurman, H. W. Chang, S. K. R. Cho, and I. M. Shih, “Diverse tumorigenic pathways in ovarian serous carcinoma,” American Journal of Pathology, vol. 160, no. 4, pp. 1223–1228, 2002. View at Google Scholar · View at Scopus
  77. G. Singer, R. Oldt, Y. Cohen et al., “Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma,” Journal of the National Cancer Institute, vol. 95, no. 6, pp. 484–486, 2003. View at Google Scholar · View at Scopus
  78. J. Willner, K. Wurz, K. H. Allison et al., “Alternate molecular genetic pathways in ovarian carcinomas of common histological types,” Human Pathology, vol. 38, no. 4, pp. 607–613, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. Y. H. Cho, D. Y. Kim, J. H. Kim et al., “Mutational analysis of KRAS, BRAF, and TP53 genes of ovarian serous carcinomas in Korean women,” Yonsei Medical Journal, vol. 50, no. 2, pp. 266–272, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. J. Abubaker, P. Bavi, W. Al-Haqawi et al., “PIK3CA alterations in Middle Eastern ovarian cancers,” Molecular Cancer, vol. 8, article 51, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. L. Shayesteh, Y. Lu, W. L. Kuo et al., “PlK3CA is implicated as an oncogene in ovarian cancer,” Nature Genetics, vol. 21, no. 1, pp. 99–102, 1999. View at Publisher · View at Google Scholar · View at Scopus
  82. I. G. Campbell, S. E. Russell, D. Y. H. Choong et al., “Mutation of the PIK3CA gene in ovarian and breast cancer,” Cancer Research, vol. 64, no. 21, pp. 7678–7681, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. J. Woenckhaus, K. Steger, K. Sturm, K. Münstedt, F. E. Franke, and I. Fenic, “Prognostic value of PIK3CA and phosphorylated AKT expression in ovarian cancer,” Virchows Archiv, vol. 450, no. 4, pp. 387–395, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. K. T. Kuo, T. L. Mao, S. Jones et al., “Frequent activating mutations of PIK3CA in ovarian clear cell carcinoma,” American Journal of Pathology, vol. 174, no. 5, pp. 1597–1601, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. P. H. Hwang, S. Y. Kim, J. C. Lee, S. J. Kim, H. K. Yi, and D. Y. Lee, “PTEN/MMAC1 enhances the growth inhibition by anticancer drugs with downregulation of IGF-II expression in gastric cancer cells,” Experimental and Molecular Medicine, vol. 37, no. 5, pp. 391–398, 2005. View at Google Scholar · View at Scopus
  86. H. K. Yi, S. Y. Kim, P. H. Hwang et al., “Impact of PTEN on the expression of insulin-like growth factors (IGFs) and IGF-binding proteins in human gastric adenocarcinoma cells,” Biochemical and Biophysical Research Communications, vol. 330, no. 3, pp. 760–767, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. H. Zhao, J. Dupont, S. Yakar, M. Karas, and D. LeRoith, “PTEN inhibits cell proliferation and induces apoptosis by downregulating cell surface IGF-IR expression in prostate cancer cells,” Oncogene, vol. 23, no. 3, pp. 786–794, 2004. View at Publisher · View at Google Scholar · View at Scopus
  88. J. Dupont, M. Karas, and D. LeRoith, “The potentiation of estrogen on insulin-like growth factor I action in MCF-7 human breast cancer cells includes cell cycle components,” Journal of Biological Chemistry, vol. 275, no. 46, pp. 35893–35901, 2000. View at Publisher · View at Google Scholar · View at Scopus
  89. S. M. Rosenthal and Z. Q. Cheng, “Opposing early and late effects of insulin-like growth factor I on differentiation and the cell cycle regulatory retinoblastoma protein in skeletal myoblasts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 22, pp. 10307–10311, 1995. View at Publisher · View at Google Scholar · View at Scopus
  90. S. Coats, W. M. Flanagan, J. Nourse, and J. M. Roberts, “Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle,” Science, vol. 272, no. 5263, pp. 877–880, 1996. View at Google Scholar · View at Scopus
  91. D. Zhang and P. Brodt, “Type 1 insulin-like growth factor regulates MT1-MMP synthesis and tumor invasion via PI 3-kinase/Akt signaling,” Oncogene, vol. 22, no. 7, pp. 974–982, 2003. View at Publisher · View at Google Scholar · View at Scopus
  92. E. Mira, S. Mañes, R. A. Lacalle, G. Márquez, and C. Martínez-A, “Insulin-like growth factor I-triggered cell migration and invasion are mediated by matrix metalloproteinase-9,” Endocrinology, vol. 140, no. 4, pp. 1657–1664, 1999. View at Google Scholar · View at Scopus
  93. H. Maeta, S. Ohgi, and T. Terada, “Protein expression of matrix metalloproteinases 2 and 9 and tissue inhibitors of metalloproteinase 1 and 2 in papillary thyroid carcinomas,” Virchows Archiv, vol. 438, no. 2, pp. 121–128, 2001. View at Publisher · View at Google Scholar · View at Scopus
  94. E. Baldini, M. Toller, F. M. Graziano et al., “Expression of matrix metalloproteinases and their specific inhibitors in normal and different human thyroid tumor cell lines,” Thyroid, vol. 14, no. 11, pp. 881–888, 2004. View at Google Scholar · View at Scopus
  95. M. Volante, P. Sperone, E. Bollito et al., “Matrix metalloproteinase type 2 expression in malignant adrenocortical tumors: diagnostic and prognostic significance in a series of 50 adrenocortical carcinomas,” Modern Pathology, vol. 19, no. 12, pp. 1563–1569, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. K. Q. Cai, W. L. Yang, C. D. Capo-Chichi et al., “Prominent expression of metalloproteinases in early stages of ovarian tumorigenesis,” Molecular Carcinogenesis, vol. 46, no. 2, pp. 130–143, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. C. S. Zong, L. Zeng, Y. Jiang, H. B. Sadowski, and L. H. Wang, “Stat3 plays an important role in oncogenic Ros- and insulin-like growth factor I receptor-induced anchorage-independent growth,” Journal of Biological Chemistry, vol. 273, no. 43, pp. 28065–28072, 1998. View at Publisher · View at Google Scholar · View at Scopus
  98. C. S. Zong, J. Chan, D. E. Levy, C. Horvath, H. B. Sadowski, and L. H. Wang, “Mechanism of STAT3 activation by insulin-like growth factor I receptor,” Journal of Biological Chemistry, vol. 275, no. 20, pp. 15099–15105, 2000. View at Publisher · View at Google Scholar · View at Scopus
  99. H. Min and Z. Wei-Hong, “Constitutive activation of signal transducer and activator of transcription 3 in epithelial ovarian carcinoma,” Journal of Obstetrics and Gynaecology Research, vol. 35, no. 5, pp. 918–925, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. M. Doghman, T. Karpova, G. A. Rodrigues et al., “Increased steroidogenic factor-1 dosage triggers adrenocortical cell proliferation and cancer,” Molecular Endocrinology, vol. 21, no. 12, pp. 2968–2987, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. M. Olivier, R. Eeles, M. Hollstein, M. A. Khan, C. C. Harris, and P. Hainaut, “The IARC TP53 database: new online mutation analysis and recommendations to users,” Human Mutation, vol. 19, no. 6, pp. 607–614, 2002. View at Publisher · View at Google Scholar · View at Scopus
  102. M. Reincke, F. Beuschlein, M. Slawik, and K. Borm, “Molecular adrenocortical tumourigenesis,” European Journal of Clinical Investigation, vol. 30, supplement 3, pp. 63–68, 2000. View at Google Scholar · View at Scopus
  103. R. Malaguarnera, V. Vella, R. Vigneri, and F. Frasca, “p53 family proteins in thyroid cancer,” Endocrine-Related Cancer, vol. 14, no. 1, pp. 43–60, 2007. View at Publisher · View at Google Scholar · View at Scopus
  104. H. Werner, E. Karnieli, F. J. Rauscher, and D. LeRoith, “Wild-type and mutant p53 differentially regulate transcription of the insulin-like growth factor I receptor gene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 16, pp. 8318–8323, 1996. View at Publisher · View at Google Scholar · View at Scopus
  105. N. J. G. Webster, J. L. Resnik, D. B. Reichart, B. Strauss, M. Haas, and B. L. Seely, “Repression of the insulin receptor promoter by the tumor suppressor gene product p53: a possible mechanism for receptor overexpression in breast cancer,” Cancer Research, vol. 56, no. 12, pp. 2781–2788, 1996. View at Google Scholar · View at Scopus
  106. L. Zhang, F. Kashanchi, Q. Zhan et al., “Regulation of insulin-like growth factor II P3 promoter by p53: a potential mechanism for tumorigenesis,” Cancer Research, vol. 56, no. 6, pp. 1367–1373, 1996. View at Google Scholar · View at Scopus
  107. L. Buckbinder, R. Talbott, S. Velasco-Miguel et al., “Induction of the growth inhibitor IGF-binding protein 3 by p53,” Nature, vol. 377, no. 6550, pp. 646–649, 1995. View at Google Scholar · View at Scopus
  108. M. K. Tennant, J. B. Thrasher, P. A. Twomey, R. S. Birnbaum, and S. R. Plymate, “Insulin-like growth factor-binding protein-2 and -3 expression in benign human prostate epithelium, prostate intraepithelial neoplasia, and adenocarcinoma of the prostate,” Journal of Clinical Endocrinology and Metabolism, vol. 81, no. 1, pp. 411–420, 1996. View at Publisher · View at Google Scholar · View at Scopus
  109. A. A. Rasmussen and K. J. Cullen, “Paracrine/autocrine regulation of breast cancer by the insulin-like growth factors,” Breast Cancer Research and Treatment, vol. 47, no. 3, pp. 219–233, 1998. View at Publisher · View at Google Scholar · View at Scopus
  110. N. P. Michell, M. J. S. Langman, and M. C. Eggo, “Insulin-like growth factors and their binding proteins in human colonocytes: preferential degradation of insulin-like growth factor binding protein 2 in colonic cancers,” British Journal of Cancer, vol. 76, no. 1, pp. 60–66, 1997. View at Google Scholar · View at Scopus
  111. A. Hakam, T. J. Yeatman, L. Lu et al., “Expression of insulin-like growth factor-1 receptor in human colorectal cancer,” Human Pathology, vol. 30, no. 10, pp. 1128–1133, 1999. View at Publisher · View at Google Scholar · View at Scopus
  112. J. DiGiovanni, K. Kiguchi, A. Frijhoff et al., “Deregulated expression of insulin-like growth factor 1 in prostate epithelium leads to neoplasia in transgenic mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 7, pp. 3455–3460, 2000. View at Publisher · View at Google Scholar · View at Scopus
  113. K. Scotlandi, M. C. Manara, M. Serra et al., “Expression of insulin-like growth factor system components in Ewing's sarcoma and their association with survival,” European Journal of Cancer, vol. 47, no. 8, pp. 1258–1266, 2011. View at Publisher · View at Google Scholar · View at Scopus
  114. S. E. Hankinson, W. C. Willett, G. A. Colditz et al., “Circulating concentrations of insulin-like growth factor-I and risk of breast cancer,” The Lancet, vol. 351, no. 9113, pp. 1393–1396, 1998. View at Publisher · View at Google Scholar · View at Scopus
  115. P. Cohen, D. M. Peehl, B. Baker, F. Liu, R. L. Hintz, and R. G. Rosenfeld, “Insulin-like growth factor axis abnormalities in prostatic stromal cells from patients with benign prostatic hyperplasia,” Journal of Clinical Endocrinology and Metabolism, vol. 79, no. 5, pp. 1410–1415, 1994. View at Publisher · View at Google Scholar · View at Scopus
  116. C. Balkany and G. W. Cushing, “An association between acromegaly and thyroid carcinoma,” Thyroid, vol. 5, no. 1, pp. 47–50, 1995. View at Google Scholar · View at Scopus
  117. P. Tita, M. R. Ambrosio, C. Scollo et al., “High prevalence of differentiated thyroid carcinoma in acromegaly,” Clinical Endocrinology, vol. 63, no. 2, pp. 161–167, 2005. View at Publisher · View at Google Scholar · View at Scopus
  118. C. Gicquel, X. Bertagna, V. Gaston et al., “Molecular markers and long-term recurrences in a large cohort of patients with sporadic adrenocortical tumors,” Cancer Research, vol. 61, no. 18, pp. 6762–6767, 2001. View at Google Scholar · View at Scopus
  119. K. L. Terry, S. S. Tworoger, M. A. Gates, D. W. Cramer, and S. E. Hankinson, “Common genetic variation in IGF1, IGFBP1 and IGFBP3 and ovarian cancer risk,” Carcinogenesis, vol. 30, no. 12, pp. 2042–2046, 2009. View at Publisher · View at Google Scholar · View at Scopus
  120. C. L. Pearce, J. A. Doherty, D. J. van den Berg et al., “Genetic variation in insulin-like growth factor 2 may play a role in ovarian cancer risk,” Human Molecular Genetics, vol. 20, no. 11, pp. 2263–2272, 2011. View at Publisher · View at Google Scholar · View at Scopus
  121. A. M. Fair, Q. Dai, X. O. Shu et al., “Energy balance, insulin resistance biomarkers, and breast cancer risk,” Cancer Detection and Prevention, vol. 31, no. 3, pp. 214–219, 2007. View at Publisher · View at Google Scholar · View at Scopus
  122. P. Pisani, “Hyper-insulinaemia and cancer, meta-analyses of epidemiological studies,” Archives of Physiology and Biochemistry, vol. 114, no. 1, pp. 63–70, 2008. View at Publisher · View at Google Scholar · View at Scopus
  123. P. Vigneri, F. Frasca, L. Sciacca, G. Pandini, and R. Vigneri, “Diabetes and cancer,” Endocrine-Related Cancer, vol. 16, no. 4, pp. 1103–1123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  124. J. C. Heuson and N. Legros, “Influence of insulin deprivation on growth of the 7,12-dimethylbenz(a)anthracene-induced mammary carcinoma in rats subjected to alloxan diabetes and food restriction,” Cancer Research, vol. 32, no. 2, pp. 226–232, 1972. View at Google Scholar · View at Scopus
  125. G. Steinbach, S. P. Kumar, B. S. Reddy, M. Lipkin, and P. R. Holt, “Effects of caloric restriction and dietary fat on epithelial cell proliferation in rat colon,” Cancer Research, vol. 53, no. 12, pp. 2745–2749, 1993. View at Google Scholar · View at Scopus
  126. D. E. Corpet, C. Jacquinet, G. Peiffer, and S. Taché, “Insulin injections promote the growth of aberrant crypt foci in the colon of rats,” Nutrition and Cancer, vol. 27, no. 3, pp. 316–320, 1997. View at Google Scholar · View at Scopus
  127. T. T. Tran, A. Medline, and W. R. Bruce, “Insulin promotion of colon tumors in rats,” Cancer Epidemiology Biomarkers and Prevention, vol. 5, no. 12, pp. 1013–1015, 1996. View at Google Scholar · View at Scopus
  128. J. N. Rezzónico, M. Rezzónico, E. Pusiol, F. Pitoia, and H. Niepomniszcze, “Increased prevalence of insulin resistance in patients with differentiated thyroid carcinoma,” Metabolic Syndrome and Related Disorders, vol. 7, no. 4, pp. 375–380, 2009. View at Publisher · View at Google Scholar · View at Scopus
  129. J. Rezzonico, M. Rezzonico, E. Pusiol, F. Pitoia, and H. Niepomniszcze, “Introducing the thyroid gland as another victim of the insulin resistance syndrome,” Thyroid, vol. 18, no. 4, pp. 461–464, 2008. View at Publisher · View at Google Scholar · View at Scopus
  130. A. Engeland, S. Tretli, L. A. Akslen, and T. Bjørge, “Body size and thyroid cancer in two million Norwegian men and women,” British Journal of Cancer, vol. 95, no. 3, pp. 366–370, 2006. View at Publisher · View at Google Scholar · View at Scopus
  131. S. W. Oh, Y. S. Yoon, and S. A. Shin, “Effects of excess weight on cancer incidences depending on cancer sites and histologic findings among men: Korea National Health Insurance Corporation study,” Journal of Clinical Oncology, vol. 23, no. 21, pp. 4742–4754, 2005. View at Publisher · View at Google Scholar · View at Scopus
  132. T. Suzuki, K. Matsuo, Y. Hasegawa et al., “Anthropometric factors at age 20 years and risk of thyroid cancer,” Cancer Causes and Control, vol. 19, no. 10, pp. 1233–1242, 2008. View at Publisher · View at Google Scholar · View at Scopus
  133. P. Brindel, F. Doyon, F. Rachédi et al., “Anthropometric factors in differentiated thyroid cancer in French Polynesia: a case-control study,” Cancer Causes and Control, vol. 20, no. 5, pp. 581–590, 2009. View at Publisher · View at Google Scholar · View at Scopus
  134. C. M. Kitahara, E. A. Platz, L. E. B. Freeman et al., “Obesity and thyroid cancer risk among U.S. men and women: a pooled analysis of five prospective studies,” Cancer Epidemiology Biomarkers and Prevention, vol. 20, no. 3, pp. 464–472, 2011. View at Publisher · View at Google Scholar · View at Scopus
  135. F. Clavel-Chapelon, G. Guillas, L. Tondeur, C. Kernaleguen, and M. C. Boutron-Ruault, “Risk of differentiated thyroid cancer in relation to adult weight, height and body shape over life: the French E3N cohort,” International Journal of Cancer, vol. 126, no. 12, pp. 2984–2990, 2010. View at Publisher · View at Google Scholar · View at Scopus
  136. L. D. Maso, C. L. Vecchia, S. Franceschi et al., “A pooled analysis of thyroid cancer studies. V. Anthropometric factors,” Cancer Causes and Control, vol. 11, no. 2, pp. 137–144, 2000. View at Publisher · View at Google Scholar · View at Scopus
  137. A. G. Renehan, M. Tyson, M. Egger, R. F. Heller, and M. Zwahlen, “Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies,” The Lancet, vol. 371, no. 9612, pp. 569–578, 2008. View at Publisher · View at Google Scholar · View at Scopus
  138. K. Rapp, J. Schroeder, J. Klenk et al., “Obesity and incidence of cancer: a large cohort study of over 145000 adults in Austria,” British Journal of Cancer, vol. 93, no. 9, pp. 1062–1067, 2005. View at Publisher · View at Google Scholar · View at Scopus
  139. C. Samanic, W. H. Chow, G. Gridley, B. Jarvholm, and J. F. Fraumeni Jr., “Relation of body mass index to cancer risk in 362,552 Swedish men,” Cancer Causes and Control, vol. 17, no. 7, pp. 901–909, 2006. View at Publisher · View at Google Scholar · View at Scopus
  140. T. Mijović, J. How, M. Pakdaman et al., “Body mass index in the evaluation of thyroid cancer risk,” Thyroid, vol. 19, no. 5, pp. 467–472, 2009. View at Google Scholar · View at Scopus
  141. C. Iribarren, T. Haselkorn, I. S. Tekawa, and G. D. Friedman, “Cohort study of thyroid cancer in a San Francisco bay area population,” International Journal of Cancer, vol. 93, no. 5, pp. 745–750, 2001. View at Publisher · View at Google Scholar · View at Scopus
  142. J. E. Paes, K. Hua, R. Nagy, R. T. Kloos, D. Jarjoura, and M. D. Ringel, “The relationship between body mass index and thyroid cancer pathology features and outcomes: a clinicopathological cohort study,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 9, pp. 4244–4250, 2010. View at Publisher · View at Google Scholar · View at Scopus
  143. M. Almquist, D. Johansen, T. Björge et al., “Metabolic factors and risk of thyroid cancer in the Metabolic syndrome and Cancer project (Me-Can),” Cancer Causes and Control, vol. 22, no. 5, pp. 743–751, 2011. View at Publisher · View at Google Scholar · View at Scopus
  144. B. Aschebrook-Kilfoy, M. M. Sabra, A. Brenner et al., “Diabetes and thyroid cancer risk in the National Institutes of Health-AARP Diet and Health Study,” Thyroid, vol. 21, pp. 957–963.
  145. A. Gursoy, “Rising thyroid cancer incidence in the world might be related to insulin resistance,” Medical Hypotheses, vol. 74, no. 1, pp. 35–36, 2010. View at Publisher · View at Google Scholar · View at Scopus
  146. L. Vona-Davis and D. P. Rose, “Adipokines as endocrine, paracrine, and autocrine factors in breast cancer risk and progression,” Endocrine-Related Cancer, vol. 14, no. 2, pp. 189–206, 2007. View at Publisher · View at Google Scholar · View at Scopus
  147. K. Rapp, J. Schroeder, J. Klenk et al., “Fasting blood glucose and cancer risk in a cohort of more than 140,000 adults in Austria,” Diabetologia, vol. 49, no. 5, pp. 945–952, 2006. View at Publisher · View at Google Scholar · View at Scopus
  148. B. G. Chittenden, G. Fullerton, A. Maheshwari, and S. Bhattacharya, “Polycystic ovary syndrome and the risk of gynaecological cancer: a systematic review,” Reproductive Biomedicine Online, vol. 19, no. 3, pp. 398–405, 2009. View at Google Scholar · View at Scopus
  149. H. S. Yang, C. Yoon, S. K. Myung, and S. M. Park, “Effect of obesity on survival of women with epithelial ovarian cancer: a systematic review and meta-analysis of observational studies,” International Journal of Gynecological Cancer, vol. 21, no. 9, pp. 1525–1532, 2011. View at Google Scholar
  150. T. Pierpoint, P. M. McKeigue, A. J. Isaacs, S. H. Wild, and H. S. Jacobs, “Mortality of women with polycystic ovary syndrome at long-term follow-up,” Journal of Clinical Epidemiology, vol. 51, no. 7, pp. 581–586, 1998. View at Publisher · View at Google Scholar · View at Scopus
  151. A. Gadducci, A. Gargini, E. Palla, A. Fanucchi, and A. R. Genazzani, “Polycystic ovary syndrome and gynecological cancers: is there a link?” Gynecological Endocrinology, vol. 20, no. 4, pp. 200–208, 2005. View at Publisher · View at Google Scholar · View at Scopus
  152. M. Reincke, M. Fassnacht, S. Väth, P. Mora, and B. Allolio, “Adrenal incidentalomas: a manifestation of the metabolic syndrome?” Endocrine Research, vol. 22, no. 4, pp. 757–761, 1996. View at Google Scholar · View at Scopus
  153. S. Midorikawa, H. Sanada, S. Hashimoto, T. Suzuki, and T. Watanabe, “The improvement of insulin resistance in patients with adrenal incidentaloma by surgical resection,” Clinical Endocrinology, vol. 54, no. 6, pp. 797–804, 2001. View at Publisher · View at Google Scholar · View at Scopus
  154. S. J. Chen, S. N. Yu, J. E. Tzeng et al., “Characterization of the major histopathological components of thyroid nodules using sonographic textural features for clinical diagnosis and management,” Ultrasound in Medicine and Biology, vol. 35, no. 2, pp. 201–208, 2009. View at Publisher · View at Google Scholar · View at Scopus
  155. K. Wojciechowska and A. Lewinski, “BRAF mutations in papillary thyroid carcinoma,” Endocrine Regulations, vol. 40, no. 4, pp. 129–138, 2006. View at Google Scholar · View at Scopus
  156. V. Vella, L. Sciacca, G. Pandini et al., “The IGF system in thyroid cancer: new concepts,” Journal of Clinical Pathology, vol. 54, no. 3, pp. 121–124, 2001. View at Publisher · View at Google Scholar · View at Scopus
  157. B. Tode, M. Serio, C. M. Rotella et al., “Insulin-like growth factor-I: autocrine secretion by human thyroid follicular cells in primary culture,” Journal of Clinical Endocrinology and Metabolism, vol. 69, no. 3, pp. 639–647, 1989. View at Google Scholar · View at Scopus
  158. L. K. Bachrach, F. R. Liu, G. N. Burrow, and M. C. Eggo, “Characterization of insulin-like growth factor-binding proteins from sheep thyroid cells,” Endocrinology, vol. 125, no. 6, pp. 2831–2838, 1989. View at Google Scholar · View at Scopus
  159. D. W. Williams, E. D. Williams, and D. Wynford-Thomas, “Loss of dependence on IGF-1 for proliferation of human thyroid adenoma cells,” British Journal of Cancer, vol. 57, no. 6, pp. 535–539, 1988. View at Google Scholar · View at Scopus
  160. N. Onoda, E. Ohmura, T. Tsushima et al., “Autocrine role on insulin-like growth factor (IGF)-I in a human thyroid cancer cell line,” European Journal of Cancer A, vol. 28, no. 11, pp. 1904–1909, 1992. View at Google Scholar · View at Scopus
  161. S. Masood, L. J. Auguste, A. Westerband, C. Belluco, E. Valderama, and J. Attie, “Differential oncogenic expression in thyroid follicular and Hurthle cell carcinomas,” American Journal of Surgery, vol. 166, no. 4, pp. 366–368, 1993. View at Publisher · View at Google Scholar · View at Scopus
  162. F. Minuto, A. Barreca, P. del Monte, G. Cariola, G. C. Torre, and G. Giordano, “Immunoreactive insulin-like growth factor I (IGF-I) and IGF-I-binding protein content in human thyroid tissue,” Journal of Clinical Endocrinology and Metabolism, vol. 68, no. 3, pp. 621–626, 1989. View at Google Scholar · View at Scopus
  163. V. Poulaki, C. S. Mitsiades, C. McMullan et al., “Regulation of vascular endothelial growth factor expression by onsulin-like growth factor I in thyroid carcinomas,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 11, pp. 5392–5398, 2003. View at Publisher · View at Google Scholar · View at Scopus
  164. H. Gydee, J. T. O'Neill, A. Patel, A. J. Bauer, R. M. Tuttle, and G. L. Francis, “Differentiated thyroid crcinomas from children and adolescents express IGF-I and the IGF-I Receptor (IGF-I-R). Cancers with the most intense IGF-I-R expression may be more aggressive,” Pediatric Research, vol. 55, no. 4, pp. 709–715, 2004. View at Publisher · View at Google Scholar · View at Scopus
  165. E. Maiorano, A. Ciampolillo, G. Viale et al., “Insulin-like growth factor I expression in thyroid tumors,” Applied Immunohistochemistry and Molecular Morphology, vol. 8, no. 2, pp. 110–119, 2000. View at Publisher · View at Google Scholar · View at Scopus
  166. M. S. Wicha, S. Liu, and G. Dontu, “Cancer stem cells: an old idea—a paradigm shift,” Cancer Research, vol. 66, no. 4, pp. 1883–1890, 2006. View at Publisher · View at Google Scholar · View at Scopus
  167. Z. Wang, G. Chakravarty, S. Kim et al., “Growth-inhibitory effects of human anti-insulin-like growth factor-1 receptor antibody (A12) in an orthotopic nude mouse model of anaplastic thyroid carcinoma,” Clinical Cancer Research, vol. 12, no. 15, pp. 4755–4765, 2006. View at Publisher · View at Google Scholar · View at Scopus
  168. E. Phielix, J. Szendroedi, and M. Roden, “The role of metformin and thiazolidinediones in the regulation of hepatic glucose metabolism and its clinical impact,” Trends in Pharmacological Sciences, vol. 32, pp. 607–616, 2011. View at Publisher · View at Google Scholar · View at Scopus
  169. A. Aiello, G. Pandini, F. Frasca et al., “Peroxisomal proliferator-activated receptor-γ agonists induce partial reversion of epithelial-mesenchymal transition in anaplastic thyroid cancer cells,” Endocrinology, vol. 147, no. 9, pp. 4463–4475, 2006. View at Publisher · View at Google Scholar · View at Scopus
  170. G. Chen, S. Xu, K. Renko, and M. Derwahl, “Metformin inhibits growth of thyroid carcinoma cells, suppresses self-renewal of derived cancer stem cells, and potentiates the effect of chemotherapeutic agents,” Journal of Clinical Endocrinology and Metabolism, vol. 97, pp. E510–E520, 2012. View at Google Scholar
  171. A. C. Latronico and G. P. Chrousos, “Extensive personal, experience: adrenocortical tumors,” Journal of Clinical Endocrinology and Metabolism, vol. 82, no. 5, pp. 1317–1324, 1997. View at Google Scholar · View at Scopus
  172. C. Fottner, A. Hoeflich, E. Wolf, and M. M. Weber, “Role of the insulin-like growth factor system in adrenocortical growth control and carcinogenesis,” Hormone and Metabolic Research, vol. 36, no. 6, pp. 397–405, 2004. View at Publisher · View at Google Scholar · View at Scopus
  173. C. Shon, V. Mladenovski, R. Petkov et al., “Diagnosis and surgical treatment of adrenocortical carcinoma. A review of the literature and report of two cases,” Khirurgiia, vol. 56, no. 2, pp. 45–49, 2000. View at Google Scholar · View at Scopus
  174. J. A. Soreide, K. Brabrand, and S. O. Thoresen, “Adrenal cortical carcinoma in Norway, 1970–1984,” World Journal of Surgery, vol. 16, no. 4, pp. 663–667, 1992. View at Google Scholar · View at Scopus
  175. J. Lindholm, S. Juul, J. O. L. Jørgensen et al., “Incidence and late prognosis of Cushing's syndrome: a population-based study,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 1, pp. 117–123, 2001. View at Publisher · View at Google Scholar · View at Scopus
  176. R. C. Ribeiro, E. M. Pinto, G. P. Zambetti, and C. Rodriguez-Galindo, “The international pediatric adrenocortical tumor registry initiative: contributions to clinical, biological, and treatment advances in pediatric adrenocortical tumors,” Molecular and Cellular Endocrinology, vol. 351, pp. 37–43, 2012. View at Google Scholar
  177. M. Q. Almeida, M. C. B. V. Fragoso, C. F. P. Lotfi et al., “Expression of insulin-like growth factor-II and its receptor in pediatric and adult adrenocortical tumors,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 9, pp. 3524–3531, 2008. View at Publisher · View at Google Scholar · View at Scopus
  178. H. M. Khandwala, I. E. McCutcheon, A. Flyvbjerg, and K. E. Friend, “The effects of insulin-like growth factors on tumorigenesis and neoplastic growth,” Endocrine Reviews, vol. 21, no. 3, pp. 215–244, 2000. View at Publisher · View at Google Scholar · View at Scopus
  179. G. Cantini, A. Lombardi, E. Piscitelli et al., “Rosiglitazone inhibits adrenocortical cancer cell proliferation by interfering with the IGF-IR intracellular signaling,” PPAR Research, Article ID 904041, 2008. View at Publisher · View at Google Scholar · View at Scopus
  180. N. Boulle, A. Logié, C. Gicquel, L. Perin, and Y. L. Bouc, “Increased levels of insulin-like growth factor II (IGF-II) and IGF- binding protein-2 are associated with malignancy in sporadic adrenocortical tumors,” Journal of Clinical Endocrinology and Metabolism, vol. 83, no. 5, pp. 1713–1720, 1998. View at Publisher · View at Google Scholar · View at Scopus
  181. A. Logié, N. Boulle, V. Gaston et al., “Autocrine role of IGF-II in proliferation of human adrenocortical carcinoma NCI H295R cell line,” Journal of Molecular Endocrinology, vol. 23, no. 1, pp. 23–32, 1999. View at Publisher · View at Google Scholar · View at Scopus
  182. S. Faiçal, R. M. B. Maciel, V. Nosé-Alberti, M. C. Santos, and C. E. Kater, “Immunodetection of insulin-like growth factor I (IGF-I) in normal and pathological adrenocortical tissue,” Endocrine Pathology, vol. 9, no. 1, pp. 63–70, 1998. View at Google Scholar · View at Scopus
  183. T. J. Giordano, “Gene expression profiling of endocrine tumors using DNA microarrays: progress and Promise,” Endocrine Pathology, vol. 14, no. 2, pp. 107–116, 2003. View at Publisher · View at Google Scholar · View at Scopus
  184. F. de Fraipont, M. El Atifi, N. Cherradi et al., “Gene expression profiling of human adrenocortical tumors using complementary deoxyribonucleic acid microarrays identifies several candidate genes as markers of malignancy,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 3, pp. 1819–1829, 2005. View at Publisher · View at Google Scholar · View at Scopus
  185. C. Gicquel, X. Bertagna, H. Schneid et al., “Rearrangements at the 11p15 locus and overexpression of insulin-like growth factor-II gene in sporadic adrenocortical tumors,” Journal of Clinical Endocrinology and Metabolism, vol. 78, no. 6, pp. 1444–1453, 1994. View at Publisher · View at Google Scholar · View at Scopus
  186. C. Gicquel, M. L. Raffin-Sanson, V. Gaston et al., “Structural and functional abnormalities at 11p15 are associated with the malignant phenotype in sporadic adrenocortical tumors: study on a series of 82 tumors,” Journal of Clinical Endocrinology and Metabolism, vol. 82, no. 8, pp. 2559–2565, 1997. View at Publisher · View at Google Scholar · View at Scopus
  187. C. Gicquel, N. Boulle, A. Logié, N. Bourcigaux, V. Gaston, and Y. Le Bouc, “Involvement of the IGF system in the pathogenesis of adrenocortical tumors,” Annales d'Endocrinologie, vol. 62, no. 2, pp. 189–192, 2001. View at Google Scholar · View at Scopus
  188. E. Wolf, A. Hoeflich, and H. Lahm, “What is the function of IGF-II in postnatal life? Answers from transgenic mouse models,” Growth Hormone and IGF Research, vol. 8, no. 3, pp. 185–193, 1998. View at Google Scholar · View at Scopus
  189. M. M. Weber, C. Fottner, P. Schmidt et al., “Postnatal overexpression of insulin-like growth factor II in transgenic mice is associated with adrenocortical hyperplasia and enhanced steroidogenesis,” Endocrinology, vol. 140, no. 4, pp. 1537–1543, 1999. View at Google Scholar · View at Scopus
  190. N. Boulle, E. Baudin, C. Gicquel et al., “Evaluation of plasma insulin-like growth factor binding protein-2 as a marker for adrenocortical tumors,” European Journal of Endocrinology, vol. 144, no. 1, pp. 29–36, 2001. View at Google Scholar · View at Scopus
  191. A. N. West, G. A. Neale, S. Pounds et al., “Gene expression profiling of childhood adrenocortical tumors,” Cancer Research, vol. 67, no. 2, pp. 600–608, 2007. View at Publisher · View at Google Scholar · View at Scopus
  192. M. M. Weber, C. J. Auernhammer, W. Kiess, and D. Engelhardt, “Insulin-like growth factor receptors in normal and tumorous adult human adrenocortical glands,” European Journal of Endocrinology, vol. 136, no. 3, pp. 296–303, 1997. View at Google Scholar · View at Scopus
  193. A. Blackburn, R. A. Dressendörfer, W. F. Blum et al., “Interactions of insulin-like growth factor (IGF)-II and growth hormone in vivo: circulating levels of IGF-I and IGF-binding proteins in transgenic mice,” European Journal of Endocrinology, vol. 137, no. 6, pp. 701–708, 1997. View at Publisher · View at Google Scholar · View at Scopus
  194. M. M. Weber, C. Fottner, and E. Wolf, “The role of the insulin-like growth factor system in adrenocortical tumourigenesis,” European Journal of Clinical Investigation, vol. 30, supplement 3, pp. 69–75, 2000. View at Google Scholar · View at Scopus
  195. J. G. Reeve, L. B. Kirby, A. Brinkman, S. A. Hughes, J. Schwander, and N. M. Bleechen, “Insulin-like growth-factor-binding protein gene expression and protein production by human tumour cell lines,” International Journal of Cancer, vol. 51, no. 5, pp. 818–821, 1992. View at Publisher · View at Google Scholar · View at Scopus
  196. C. Fottner, D. Engelhardt, M. W. Elmlinger, and M. M. Weber, “Identification and characterization of insulin-like growth factor (IGF)-binding protein expression and secretion by adult human adrenocortical cells: differential regulation by IGFs and adrenocorticotropin,” Journal of Endocrinology, vol. 168, no. 3, pp. 465–474, 2001. View at Publisher · View at Google Scholar · View at Scopus
  197. A. Hoeflich, O. Fettscher, H. Lahm et al., “Overexpression of insulin-like growth factor-binding protein-2 results in increased tumorigenic potential in Y-1 adrenocortical tumor cells,” Cancer Research, vol. 60, no. 4, pp. 834–838, 2000. View at Google Scholar · View at Scopus
  198. L. K. Bale and C. A. Conover, “Regulation of insulin-like growth factor binding protein-3 messenger ribonucleic acid expression by insulin-like growth factor I,” Endocrinology, vol. 131, no. 2, pp. 608–614, 1992. View at Publisher · View at Google Scholar · View at Scopus
  199. C. Camacho-Hubner, W. H. Busby Jr., R. H. McCusker, G. Wright, and D. R. Clemmons, “Identification of the forms of insulin-like growth factor-binding proteins produced by human fibroblasts and the mechanisms that regulate their secretion,” Journal of Biological Chemistry, vol. 267, no. 17, pp. 11949–11956, 1992. View at Google Scholar · View at Scopus
  200. J. L. Martin, M. Ballesteros, and R. C. Baxter, “Insulin-like growth factor-I (IGF-I) and transforming growth factor-β1 release IGF-binding protein-3 from human fibroblasts by different mechanisms,” Endocrinology, vol. 131, no. 4, pp. 1703–1710, 1992. View at Publisher · View at Google Scholar · View at Scopus
  201. M. M. Rechler, “Insulin-like growthfactor binding proteins,” Vitamins and Hormones, vol. 47, pp. 1–114, 1993. View at Publisher · View at Google Scholar · View at Scopus
  202. C. A. Conover and D. D. de Leon, “Acid-activated insulin-like growth factor-binding protein-3 proteolysis in normal and transformed cells. Role of cathepsin D,” Journal of Biological Chemistry, vol. 269, no. 10, pp. 7076–7080, 1994. View at Google Scholar · View at Scopus
  203. C. A. Conover, L. K. Bale, S. K. Durham, and D. R. Powell, “Insulin-like growth factor (IGF) binding protein-3 potentiation of IGF action is mediated through the phosphatidylinositol-3-kinase pathway and is associated with alteration in protein kinase B/AKT sensitivity,” Endocrinology, vol. 141, no. 9, pp. 3098–3103, 2000. View at Publisher · View at Google Scholar · View at Scopus
  204. J. I. Jones and D. R. Clemmons, “Insulin-like growth factors and their binding proteins: biological actions,” Endocrine Reviews, vol. 16, no. 1, pp. 3–34, 1995. View at Google Scholar · View at Scopus
  205. M. M. Weber, P. Simmler, C. Fottner, and D. Engelhardt, “Insulin-like growth factor II (IGF-II) is more potent than IGF-I in stimulating cortisol secretion from cultured bovine adrenocortical cells: interaction with the IGF-I receptor and IGF-binding proteins,” Endocrinology, vol. 136, no. 9, pp. 3714–3720, 1995. View at Google Scholar · View at Scopus
  206. C. Fottner, D. Engelhardt, and M. M. Weber, “Characterization of insulin-like growth factor binding proteins (IGFBPs) secreted by bovine adrenocortical cells in primary culture: regulation by insulin-like growth factors (IGFs) and adrenocorticotropin (ACTH),” Hormone and Metabolic Research, vol. 31, no. 2-3, pp. 203–208, 1999. View at Google Scholar · View at Scopus
  207. D. Velázquez-Fernández, C. Laurell, J. Geli et al., “Expression profiling of adrenocortical neoplasms suggests a molecular signature of malignancy,” Surgery, vol. 138, no. 6, pp. 1087–1094, 2005. View at Publisher · View at Google Scholar · View at Scopus
  208. M. Doghman, A. El Wakil, B. Cardinaud et al., “Regulation of insulin-like growth factor-mammalian target of rapamycin signaling by MicroRNA in childhood adrenocortical tumors,” Cancer Research, vol. 70, no. 11, pp. 4666–4675, 2010. View at Publisher · View at Google Scholar · View at Scopus
  209. F. M. Barlaskar, A. C. Spalding, J. H. Heaton et al., “Preclinical targeting of the type I insulin-like growth factor receptor in adrenocortical carcinoma,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 1, pp. 204–212, 2009. View at Publisher · View at Google Scholar · View at Scopus
  210. W. Shen, J. Xian, W. L. Hu, and J. Liu, “Effect of insulin-like growth factor and its receptor-I antibody on growth of human adrenocortical carcinoma SW-13 cell lines in vitro,” Nan Fang Yi Ke Da Xue Xue Bao, vol. 27, no. 1, pp. 88–91, 2007. View at Google Scholar · View at Scopus
  211. E. D. Rosen and B. M. Spiegelman, “PPARγ: a nuclear regulator of metabolism, differentiation, and cell growth,” Journal of Biological Chemistry, vol. 276, no. 41, pp. 37731–37734, 2001. View at Google Scholar · View at Scopus
  212. C. E. Clay, A. M. Namen, G. I. Atsumi et al., “Influence of J series prostaglandins on apoptosis and tumorigenesis of breast cancer cells,” Carcinogenesis, vol. 20, no. 10, pp. 1905–1911, 1999. View at Publisher · View at Google Scholar · View at Scopus
  213. P. Ferruzzi, E. Ceni, M. Tarocchi et al., “Thiazolidinediones inhibit growth and invasiveness of the human adrenocortical cancer cell line H295R,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 3, pp. 1332–1339, 2005. View at Publisher · View at Google Scholar · View at Scopus
  214. J. R. Chien, G. Aletti, D. A. Bell, G. L. Keeney, V. Shridhar, and L. C. Hartmann, “Molecular pathogenesis and therapeutic targets in epithelial ovarian cancer,” Journal of Cellular Biochemistry, vol. 102, no. 5, pp. 1117–1129, 2007. View at Publisher · View at Google Scholar · View at Scopus
  215. H. Kajihara, Y. Yamada, S. Kanayama et al., “Clear cell carcinoma of the ovary: potential pathogenic mechanisms (review),” Oncology Reports, vol. 23, no. 5, pp. 1193–1203, 2010. View at Publisher · View at Google Scholar · View at Scopus
  216. T. Riman, I. Persson, and S. Nilsson, “Hormonal aspects of epithelial ovarian cancer: review of epidemiological evidence,” Clinical Endocrinology, vol. 49, no. 6, pp. 695–707, 1998. View at Publisher · View at Google Scholar · View at Scopus
  217. A. Auranen, S. Grénman, J. Mäkinen, E. Pukkala, R. Sankila, and T. Salmi, “Borderline ovarian tumors in Finland: epidemiology and familial occurrence,” American Journal of Epidemiology, vol. 144, no. 6, pp. 548–553, 1996. View at Google Scholar · View at Scopus
  218. M. C. Beauchamp, A. Yasmeen, A. Knafo, and W. H. Gotlieb, “Targeting insulin and insulin-like growth factor pathways in epithelial ovarian cancer,” Journal of Oncology, vol. 2010, Article ID 257058, 11 pages, 2010. View at Publisher · View at Google Scholar
  219. E. R. King, Z. Zu, Y. T. M. Tsang et al., “The insulin-like growth factor 1 pathway is a potential therapeutic target for low-grade serous ovarian carcinoma,” Gynecologic Oncology, vol. 123, no. 1, pp. 13–18, 2011. View at Publisher · View at Google Scholar · View at Scopus
  220. D. Yee, F. R. Morales, T. C. Hamilton, and D. D. Von Hoff, “Expression of insulin-like growth factor I, its binding proteins, and its receptor in ovarian cancer,” Cancer Research, vol. 51, no. 19, pp. 5107–5112, 1991. View at Google Scholar · View at Scopus
  221. C. A. Conover, L. C. Hartmann, S. Bradley et al., “Biological characterization of human epithelial ovarian carcinoma cells in primary culture: the insulin-like growth factor system,” Experimental Cell Research, vol. 238, no. 2, pp. 439–449, 1998. View at Publisher · View at Google Scholar · View at Scopus
  222. K. R. Kalli and C. A. Conover, “The insulin-like growth factor/insulin system in epithelial ovarian cancer,” Frontiers in Bioscience, vol. 8, pp. d714–d722, 2003. View at Google Scholar · View at Scopus
  223. S. Chakrabarty and L. Kondratick, “Insulin-like growth factor binding protein-2 stimulates proliferation and activates multiple cascades of the mitogen-activated protein kinase pathways in NIH-OVCAR3 human epithelial ovarian cancer cells,” Cancer Biology and Therapy, vol. 5, no. 2, pp. 189–197, 2006. View at Google Scholar · View at Scopus
  224. A. Lukanova, E. Lundin, P. Toniolo et al., “Circulating levels of insulin-like growth factor-I and risk of ovarian cancer,” International Journal of Cancer, vol. 101, no. 6, pp. 549–554, 2002. View at Publisher · View at Google Scholar · View at Scopus
  225. S. S. Tworoger, I. M. Lee, J. E. Buring, M. N. Pollak, and S. E. Hankinson, “Insulin-like growth factors and ovarian cancer risk: a nested case-control study in three cohorts,” Cancer Epidemiology Biomarkers and Prevention, vol. 16, no. 8, pp. 1691–1695, 2007. View at Publisher · View at Google Scholar · View at Scopus
  226. J. M. Lancaster, R. A. Sayer, C. Blanchette et al., “High expression of insulin-like growth factor binding protein-2 messenger RNA in epithelial ovarian cancers produces elevated preoperative serum levels,” International Journal of Gynecological Cancer, vol. 16, no. 4, pp. 1529–1535, 2006. View at Publisher · View at Google Scholar · View at Scopus
  227. R. A. Sayer, J. M. Lancaster, J. Pittman et al., “High insulin-like growth factor-2 (IGF-2) gene expression is an independent predictor of poor survival for patients with advanced stage serous epithelial ovarian cancer,” Gynecologic Oncology, vol. 96, no. 2, pp. 355–361, 2005. View at Publisher · View at Google Scholar · View at Scopus
  228. L. Lu, D. Katsaros, A. Wiley et al., “The relationship of insulin-like growth factor-II, insulin-like growth factor binding protein-3, and estrogen receptor-α expression to disease progression in epithelial ovarian cancer,” Clinical Cancer Research, vol. 12, no. 4, pp. 1208–1214, 2006. View at Publisher · View at Google Scholar · View at Scopus
  229. L. Lu, D. Katsaros, A. Wiley et al., “Promoter-specific transcription of insulin-like growth factor-II in epithelial ovarian cancer,” Gynecologic Oncology, vol. 103, no. 3, pp. 990–995, 2006. View at Publisher · View at Google Scholar · View at Scopus
  230. J. S. Sussenbach, R. J. T. Rodenburg, W. Scheper, and P. Holthuizen, “Transcriptional and post-transcriptional regulation of the human IGF-II gene expression,” Advances in Experimental Medicine and Biology, vol. 343, pp. 63–71, 1993. View at Google Scholar · View at Scopus
  231. A. P. Wolffe and M. A. Matzke, “Epigenetics: regulation through repression,” Science, vol. 286, no. 5439, pp. 481–486, 1999. View at Publisher · View at Google Scholar · View at Scopus
  232. B. Qian, D. Katsaros, L. Lu et al., “IGF-II promoter specific methylation and expression in epithelial ovarian cancer and their associations with disease characteristics,” Oncology Reports, vol. 25, no. 1, pp. 203–213, 2011. View at Publisher · View at Google Scholar · View at Scopus
  233. A. C. Beeghly, D. Katsaros, A. L. Wiley et al., “IGF-II promoter methylation and ovarian cancer prognosis,” Journal of Cancer Research and Clinical Oncology, vol. 133, no. 10, pp. 713–723, 2007. View at Publisher · View at Google Scholar · View at Scopus
  234. D. Spentzos, S. A. Cannistra, F. Grall et al., “IGF axis gene expression patterns are prognostic of survival in epithelial ovarian cancer,” Endocrine-Related Cancer, vol. 14, no. 3, pp. 781–790, 2007. View at Publisher · View at Google Scholar · View at Scopus
  235. M. Muller, M. Dietel, A. Turzynski, and K. Wiechen, “Antisense phosphorothioate oligodeoxynucleotide down-regulation of the insulin-like growth factor I receptor in ovarian cancer cells,” International Journal of Cancer, vol. 77, pp. 567–571, 1998. View at Google Scholar
  236. W. H. Gotlieb, I. Bruchim, J. Gu et al., “Insulin-like growth factor receptor I targeting in epithelial ovarian cancer,” Gynecologic Oncology, vol. 100, no. 2, pp. 389–396, 2006. View at Publisher · View at Google Scholar · View at Scopus
  237. C. Li, V. W. Liu, D. W. Chan, K. M. Yao, and H. Y. Ngan, “LY294002 and metformin cooperatively enhance the inhibition of growth and the induction of apoptosis of ovarian cancer cells,” International Journal of Gynecological Cancer, vol. 22, no. 1, pp. 15–22, 2012. View at Google Scholar
  238. H. Liao, Q. Zhou, Y. Gu, T. Duan, and Y. Feng, “Luteinizing hormone facilitates angiogenesis in ovarian epithelial tumor cells and metformin inhibits the effect through the mTOR signaling pathway,” Oncology Reports, vol. 27, no. 6, pp. 1873–1878, 2012. View at Publisher · View at Google Scholar
  239. I. L. Romero, A. McCormick, K. A. McEwen et al., “Relationship of type II diabetes and metformin use to ovarian cancer progression, survival, and chemosensitivity,” Obstet Gynecol, vol. 119, no. 1, pp. 61–67, 2012. View at Google Scholar
  240. A. Bakhru, R. J. Buckanovich, and J. J. Griggs, “The impact of diabetes on survival in women with ovarian cancer,” Gynecologic Oncology, vol. 121, no. 1, pp. 106–111, 2011. View at Publisher · View at Google Scholar · View at Scopus