Table of Contents Author Guidelines Submit a Manuscript
Journal of Oncology
Volume 2012, Article ID 705036, 15 pages
http://dx.doi.org/10.1155/2012/705036
Review Article

Genetic and Clinical Features of Multiple Endocrine Neoplasia Types 1 and 2

Department of Endocrinology and Metabolism, University of Pisa, 56124 Pisa, Italy

Received 30 July 2012; Accepted 16 September 2012

Academic Editor: Marialuisa Appetecchia

Copyright © 2012 C. Romei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Carney, “Familial multiple endocrine neoplasia syndromes: components, classification, and nomenclature,” Journal of Internal Medicine, vol. 243, no. 6, pp. 425–432, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. D. J. Marsh and O. Gimm, “Multiple endocrine neoplasia: types 1 and 2,” Advances in Oto-Rhino-Laryngology, vol. 70, pp. 84–90, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. M. L. Brandi, R. F. Gagel, A. Angeli et al., “Consensus: guidelines for diagnosis and therapy of MEN type 1 and type 2,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 12, pp. 5658–5671, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. R. T. Kloos, C. Eng, D. B. Evans et al., “Medullary thyroid cancer: management guidelines of the American Thyroid Association,” Thyroid, vol. 19, no. 6, pp. 565–612, 2009. View at Google Scholar · View at Scopus
  5. N. Wohllk, H. Schweizer, Z. Erlic et al., “Multiple endocrine neoplasia type 2,” Best Practice and Research, vol. 24, no. 3, pp. 371–387, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. J. A. Carney, “Familial multiple endocrine neoplasia: the first 100 years,” American Journal of Surgical Pathology, vol. 29, no. 2, pp. 254–274, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Asgharian, Y. J. Chen, N. J. Patronas et al., “Meningiomas may be a component tumor of multiple endocrine neoplasia type 1,” Clinical Cancer Research, vol. 10, no. 3, pp. 869–880, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Asgharian, M. L. Turner, F. Gibril, L. K. Entsuah, J. Serrano, and R. T. Jensen, “Cutaneous tumors in patients with multiple endocrine neoplasm type 1 (MEN1) and gastrinomas: prospective study of frequency and development of criteria with high sensitivity and specificity for MEN1,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 11, pp. 5328–5336, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. T. N. Darling, M. C. Skarulis, S. M. Steinberg, S. J. Marx, A. M. Spiegel, and M. Turner, “Multiple facial angiofibromas and collagenomas in patients with multiple endocrine neoplasia type 1,” Archives of Dermatology, vol. 133, no. 7, pp. 853–857, 1997. View at Google Scholar · View at Scopus
  10. C. del Pozo, L. García-Pascual, M. Balsells et al., “Parathyroid carcinoma in multiple endocrine neoplasia type 1. case report and review of the literature,” Hormones, vol. 10, no. 4, pp. 326–331, 2011. View at Google Scholar · View at Scopus
  11. F. Cetani, E. Pardi, S. Borsari, and C. Marcocci, “Molecular pathogenesis of primary hyperparathyroidism,” Journal of Endocrinological Investigation, vol. 34, no. 7, supplement, pp. 35–39, 2011. View at Google Scholar · View at Scopus
  12. C. R. C. Pieterman, L. T. Van Hulsteijn, M. Den Heijer et al., “Primary hyperparathyroidism in MEN1 patients: a cohort study with longterm follow-up on preferred surgical procedure and the relation with genotype,” Annals of Surgery, vol. 255, no. 6, pp. 1171–1178, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Eller-Vainicher, I. Chiodini, C. Battista et al., “Sporadic and MEN1-related primary hyperparathyroidism: differences in clinical expression and severity,” Journal of Bone and Mineral Research, vol. 24, no. 8, pp. 1404–1410, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Romei, S. Mariotti, L. Fugazzola et al., “Multiple endocrine neoplasia type 2 syndromes (MEN 2): results from the ItaMEN network analysis on the prevalence of different genotypes and phenotypes,” European Journal of Endocrinology, vol. 163, no. 2, pp. 301–308, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Frank-Raue, W. Höppner, A. Frilling et al., “Mutations of the ret protooncogene in German multiple endocrine neoplasia families: relation between genotype and phenotype,” Journal of Clinical Endocrinology and Metabolism, vol. 81, no. 5, pp. 1780–1783, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Machens, P. Niccoli-Sire, J. Hoegel et al., “Early malignant progression of hereditary medullary thyroid cancer,” New England Journal of Medicine, vol. 349, no. 16, pp. 1517–1525, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. D. H. Schussheim, M. C. Skarulis, S. K. Agarwal et al., “Multiple endocrine neoplasia type 1: new clinical and basic findings,” Trends in Endocrinology and Metabolism, vol. 12, no. 4, pp. 173–178, 2001. View at Google Scholar · View at Scopus
  18. F. Tonelli, F. Giudici, G. Fratini, and M. L. Brandi, “Pancreatic endocrine tumors in multiple endocrine neoplasia type 1 syndrome: review of literature,” Endocrine Practice, vol. 17, supplement 3, pp. 33–40, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Delemer, “MEN1 and pituitary adenomas,” Annales d'Endocrinologie, vol. 73, no. 2, pp. 59–61, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. L. V. Syro, B. W. Scheithauer, K. Kovacs et al., “Pituitary tumors in patients with MEN1 syndrome,” Clinics, vol. 67, supplement, pp. 43–48, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Schaefer, M. Shipotko, S. Meyer et al., “Natural course of small adrenal lesions in multiple endocrine neoplasia type 1: an endoscopic ultrasound imaging study,” European Journal of Endocrinology, vol. 158, no. 5, pp. 699–704, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. R. V. Thakker, “Multiple endocrine neoplasia type 1 (MEN1),” Best Practice & Research, vol. 24, no. 3, pp. 355–370, 2010. View at Google Scholar
  23. P. Goudet, C. Bonithon-Kopp, A. Murat et al., “Gender-related differences in MEN1 lesion occurrence and diagnosis: a cohort study of 734 cases from the Groupe d'étude des Tumeurs Endocrines,” European Journal of Endocrinology, vol. 165, no. 1, pp. 97–105, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Miedlich, T. Lohmann, U. Schneyer, P. Lamesch, and R. Paschke, “Familial isolated primary hyperparathyroidism—a multiple endocrine neoplasia type 1 variant?” European Journal of Endocrinology, vol. 145, no. 2, pp. 155–160, 2001. View at Google Scholar · View at Scopus
  25. C. Larsson, B. Skogseid, K. Oberg, Y. Nakamura, and M. Nordenskjold, “Multiple endocrine neoplasia type 1 gene maps to chromosome 11 and is lost in insulinoma,” Nature, vol. 332, no. 6159, pp. 85–87, 1988. View at Google Scholar · View at Scopus
  26. S. C. Chandrasekharappa, S. C. Guru, P. Manickam et al., “Positional cloning of the gene for multiple endocrine neoplasia-type 1,” Science, vol. 276, no. 5311, pp. 404–406, 1997. View at Publisher · View at Google Scholar · View at Scopus
  27. A. G. Knudson, “Two genetic hits (more or less) to cancer,” Nature Reviews Cancer, vol. 1, no. 2, pp. 157–162, 2001. View at Google Scholar · View at Scopus
  28. K. Balogh, A. Patócs, L. Hunyady, and K. Rácz, “Menin dynamics and functional insight: take your partners,” Molecular and Cellular Endocrinology, vol. 326, no. 1-2, pp. 80–84, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Wu and X. Hua, “Menin represses tumorigenesis via repressing cell proliferation,” American Journal of Cancer Research, vol. 1, no. 6, pp. 726–39, 2011. View at Google Scholar
  30. J. Huang, B. Gurung, B. Wan et al., “The same pocket in menin binds both MLL and JUND but has opposite effects on transcription,” Nature, vol. 482, no. 7386, pp. 542–546, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. M. C. Lemos and R. V. Thakker, “Multiple endocrine neoplasia type 1 (MEN1): analysis of 1336 mutations reported in the first decade following identification of the gene,” Human Mutation, vol. 29, no. 1, pp. 22–32, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. J. S. Crabtree, P. C. Scacheri, J. M. Ward et al., “A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 3, pp. 1118–1123, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Bertolino, W. M. Tong, D. Galendo, Z. Q. Wang, and C. X. Zhang, “Heterozygous Men1 mutant mice develop a range of endocrine tumors mimicking multiple endocrine neoplasia type 1,” Molecular Endocrinology, vol. 17, no. 9, pp. 1880–1892, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. J. S. Crabtree, P. C. Scacheri, J. M. Ward et al., “Of mice and MEN1: insulinomas in a conditional mouse knockout,” Molecular and Cellular Biology, vol. 23, no. 17, pp. 6075–6085, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. C. J. Lips, K. M. Dreijerink, and J. W. Höppener, “Variable clinical expression in patients with a germline MEN1 disease gene mutation: clues to a genotype-phenotype correlation,” Clinics, vol. 67, supplement, pp. 49–56, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. S.-E. Olufemi, J. S. Green, P. Manickam et al., “Common ancestral mutation in the MEN1 gene is likely responsible for the prolactinoma variant of MEN1 (MEN1(Burin)) in four kindreds from Newfoundland,” Human Mutation, vol. 11, no. 4, pp. 264–269, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Kong, S. Ellard, C. Johnston, and N. R. Farid, “Multiple endocrine neoplasia type 1Burin from Mauritius: a novel MEN 1 mutation,” Journal of Endocrinological Investigation, vol. 24, no. 10, pp. 806–810, 2001. View at Google Scholar · View at Scopus
  38. J. D. M. Lourenco, R. A. Toledo, I. I. Mackowiak et al., “Multiple endocrine neoplasia type 1 in Brazil: MEN1 founding mutation, clinical features, and bone mineral density profile,” European Journal of Endocrinology, vol. 159, no. 3, pp. 259–274, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. F. Cetani, E. Pardi, A. Giovannetti et al., “Genetic analysis of the MEN1 gene and HPRT2 locus in two Italian kindreds with familial isolated hyperparathyroidism,” Clinical Endocrinology, vol. 56, no. 4, pp. 457–464, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. N. S. Pellegata, L. Quintanilla-Martinez, H. Siggelkow et al., “Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 42, pp. 15558–15563, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. N. S. Pellegata, “MENX,” Annales d'Endocrinologie, vol. 73, no. 2, pp. 65–70, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Molatore and N. S. Pellegata, “The MENX syndrome and p27: relationships with multiple endocrine neoplasia,” Progress in Brain Research, vol. 182, pp. 295–320, 2010. View at Google Scholar · View at Scopus
  43. I. Marinoni and N. S. Pellegata, “p27kip1: a new multiple endocrine neoplasia gene?” Neuroendocrinology, vol. 93, no. 1, pp. 19–28, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. N. Nilubol, L. Weinstein, W. F. Simonds et al., “Preoperative localizing studies for initial parathyroidectomy in MEN1 syndrome: is there any benefit?” World Journal of Surgery, vol. 36, no. 6, pp. 1368–1374, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. B. Vergès, F. Boureille, P. Goudet et al., “Pituitary disease in MEN type 1 (MEN1): data from the France-Belgium MEN1 multicenter study,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 2, pp. 457–465, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Barbe, A. Murat, B. Dupas et al., “Magnetic resonance imaging versus endoscopic ultrasonography for the detection of pancreatic tumours in multiple endocrine neoplasia type 1,” Digestive and Liver Disease, vol. 44, no. 3, pp. 228–234, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. R. V. Thakker, P. J. Newey, G. V. Walls et al., “Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1),” Journal of Clinical Endocrinology and Metabolism, vol. 97, no. 9, pp. 2990–3011, 2012. View at Publisher · View at Google Scholar · View at Scopus
  48. C. A. Stratakis, D. H. Schussheim, S. M. Freedman et al., “Pituitary macroadenoma in a 5-year-old: an early expression of multiple endocrine neoplasia type 1,” Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 12, pp. 4776–4780, 2000. View at Publisher · View at Google Scholar · View at Scopus
  49. T. Carling and R. Udelsman, “Parathyroid surgery in familial hyperparathyroid disorders,” Journal of Internal Medicine, vol. 257, no. 1, pp. 27–37, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Waldmann, C. L. López, P. Langer, M. Rothmund, and D. K. Bartsch, “Surgery for multiple endocrine neoplasia type 1-associated primary hyperparathyroidism,” British Journal of Surgery, vol. 97, no. 10, pp. 1528–1534, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. D. M. Elaraj, M. C. Skarulis, S. K. Libutti et al., “Results of initial operation for hyperparathyroidism in patients with multiple endocrine neoplasia type 1,” Surgery, vol. 134, no. 6, pp. 858–865, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. F. Tonelli, S. Spini, M. Tommasi et al., “Intraoperative parathormone measurement in patients with multiple endocrine neoplasia type I syndrome and hyperparathyroidism,” World Journal of Surgery, vol. 24, no. 5, pp. 556–563, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. F. Tonelli, T. Marcucci, G. Fratini, M. S. Tommasi, A. Falchetti, and M. L. Brandi, “Is total parathyroidectomy the treatment of choice for hyperparathyroidism in multiple endocrine neoplasia type 1?” Annals of Surgery, vol. 246, no. 6, pp. 1075–1082, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. P. V. Dickson, T. A. Rich, Y. Xing et al., “Achieving eugastrinemia in MEN1 patients: both duodenal inspection and formal lymph node dissection are important,” Surgery, vol. 150, no. 6, pp. 1143–1152, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. F. Triponez, D. Dosseh, P. Goudet et al., “Epidemiology data on 108 MEN 1 patients from the GTE with isolated nonfunctioning tumors of the pancreas,” Annals of Surgery, vol. 243, no. 2, pp. 265–272, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. K. Öberg, “Neuroendocrine tumors of the digestive tract: impact of new classifications and new agents on therapeutic approaches,” Current Opinion in Oncology, vol. 24, no. 4, pp. 433–440, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Germain, M. Klein, and L. Brunaud, “Surgical management of adrenal tumors,” Journal of Visceral Surgery, vol. 148, no. 4, pp. e250–e261, 2011. View at Google Scholar
  58. P. Goudet, A. Murat, C. Binquet et al., “Risk factors and causes of death in men1 disease. a gte (groupe d'etude des tumeurs endocrines) cohort study among 758 patients,” World Journal of Surgery, vol. 34, no. 2, pp. 249–255, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. H. P. H. Neumann, A. Vortmeyer, D. Schmidt et al., “Brief report: evidence of MEN-2 in the original description of classic pheochromocytoma,” New England Journal of Medicine, vol. 357, no. 13, pp. 1311–1315, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. J. H. Sipple, “Multiple endocrine neoplasia type 2 syndromes: historical perspectives,” Henry Ford Hospital Medical Journal, vol. 32, no. 4, pp. 219–222, 1984. View at Google Scholar · View at Scopus
  61. H. R. Keiser, M. A. Beaven, J. Doppman, S. Wells, and L. M. Buja, “Sipple's syndrome: medullary thyroid carcinoma, pheochromocytoma, and parathyroid disease. Studies in a large family. NIH conference,” Annals of Internal Medicine, vol. 78, no. 4, pp. 561–579, 1973. View at Google Scholar · View at Scopus
  62. A. L. Steiner, A. D. Goodman, and S. R. Powers, “Study of a kindred with pheochromocytoma, medullary thyroid carcinoma, hyperparathyroidism and Cushing's disease: multiple endocrine neoplasia, type 2,” Medicine, vol. 47, no. 5, pp. 371–409, 1968. View at Google Scholar · View at Scopus
  63. J. R. Howe, J. A. Norton, S. A. Wells, C. Proye, G. B. Talpos, and S. E. Carty, “Prevalence of pheochromocytoma and hyperparathyroidism in multiple endocrine neoplasia type 2A: results of long-term follow-up,” Surgery, vol. 114, no. 6, pp. 1070–1077, 1993. View at Google Scholar · View at Scopus
  64. W. B. Inabnet, P. Caragliano, D. Pertsemlidis et al., “Pheochromocytoma: inherited associations, bilaterality, and cortex preservation,” Surgery, vol. 128, no. 6, pp. 1007–1012, 2000. View at Google Scholar · View at Scopus
  65. J. M. Rodriguez, M. Balsalobre, J. L. Ponce et al., “Pheochromocytoma in MEN 2A syndrome. Study of 54 patients,” World Journal of Surgery, vol. 32, no. 11, pp. 2520–2526, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Verdy, A. M. Weber, and C. C. Roy, “Hirschsprung's disease in a family with multiple endocrine neoplasia type 2,” Journal of Pediatric Gastroenterology and Nutrition, vol. 1, no. 4, pp. 603–607, 1982. View at Google Scholar · View at Scopus
  67. M. B. Verdy, M. Cadotte, and W. Schurch, “A French Canadian family with multiple endocrine neoplasia type 2 syndromes,” Henry Ford Hospital Medical Journal, vol. 32, no. 4, pp. 251–253, 1984. View at Google Scholar · View at Scopus
  68. C. Eng, D. Clayton, I. Schuffenecker et al., “The relationship between specific ret proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2: international RET mutation consortium analysis,” Journal of the American Medical Association, vol. 276, no. 19, pp. 1575–1579, 1996. View at Publisher · View at Google Scholar · View at Scopus
  69. D. T. Donovan, M. L. Levy, B. R. Alford et al., “Familial cutaneous lichen amyloidosis in association with multiple endocrine neoplasia type 2A: a new variant,” Henry Ford Hospital Medical Journal, vol. 37, no. 3-4, pp. 147–150, 1989. View at Google Scholar · View at Scopus
  70. R. F. Gagel, M. L. Levy, D. T. Donovan, B. R. Alford, T. Wheeler, and J. A. Tschen, “Multiple endocrine neoplasia type 2a associated with cutaneous lichen amyloidosis,” Annals of Internal Medicine, vol. 111, no. 10, pp. 802–806, 1989. View at Google Scholar · View at Scopus
  71. W. J. Cunliffe, P. Hudgson, J. J. Fulthorpe et al., “A calcitonin-secreting medullary thyroid carcinoma associated with mucosal neuromas, marfanoid features, myopathy and pigmentation,” The American Journal of Medicine, vol. 48, no. 1, pp. 120–126, 1970. View at Google Scholar · View at Scopus
  72. M. Brauckhoff, A. Machens, S. Hess et al., “Premonitory symptoms preceding metastatic medullary thyroid cancer in MEN 2B: an exploratory analysis,” Surgery, vol. 144, no. 6, pp. 1044–1051, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. J. R. Farndon, G. S. Leight, and W. G. Dilley, “Familial medullary thyroid carcinoma without associated endocrinopathies: a distinct clinical entity,” British Journal of Surgery, vol. 73, no. 4, pp. 278–281, 1986. View at Google Scholar · View at Scopus
  74. R. Elisei, C. Romei, B. Cosci et al., “Brief report: RET genetic screening in patients with medullary thyroid cancer and their relatives: experience with 807 individuals at one center,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 12, pp. 4725–4729, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. P. Niccoli-Sire, A. Murat, V. Rohmer et al., “Familial medullary thyroid carcinoma with noncysteine RET mutations: phenotype-genotype relationship in a large series of patients,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 8, pp. 3746–3753, 2001. View at Publisher · View at Google Scholar · View at Scopus
  76. C. Romei, B. Cosci, G. Renzini et al., “RET genetic screening of sporadic medullary thyroid cancer (MTC) allows the preclinical diagnosis of unsuspected gene carriers and the identification of a relevant percentage of hidden familial MTC (FMTC),” Clinical Endocrinology, vol. 74, no. 2, pp. 241–247, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. M. S. Cohen and J. F. Moley, “Surgical treatment of medullary thyroid carcinoma,” Journal of Internal Medicine, vol. 253, no. 6, pp. 616–626, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. H. Donis-Keller, S. Dou, D. Chi et al., “Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC,” Human Molecular Genetics, vol. 2, no. 7, pp. 851–856, 1993. View at Google Scholar · View at Scopus
  79. L. M. Mulligan, J. B. J. Kwok, C. S. Healey et al., “Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A,” Nature, vol. 363, no. 6428, pp. 458–460, 1993. View at Publisher · View at Google Scholar · View at Scopus
  80. C. Eng, D. P. Smith, L. M. Mulligan et al., “Point mutation within the tyrosine kinase domain of the RET proto-oncogene in multiple endocrine neoplasia type 2B and related sporadic tumours,” Human Molecular Genetics, vol. 3, no. 2, pp. 237–241, 1994. View at Google Scholar · View at Scopus
  81. M. F. Erdogan, A. Gürsoy, G. Özgen et al., “Ret proto-oncogene mutations in apparently sporadic Turkish medullary thyroid carcinoma patients: Turkmen study,” Journal of Endocrinological Investigation, vol. 28, no. 9, pp. 806–809, 2005. View at Google Scholar · View at Scopus
  82. C. Eng, L. M. Mulligan, D. P. Smith et al., “Low frequency of germline mutations in the RET protooncogene in patients with apparently sporadic medullary thyroid carcinoma,” Clinical Endocrinology, vol. 43, no. 1, pp. 123–127, 1995. View at Google Scholar · View at Scopus
  83. G. Orgiana, G. Pinna, A. Camedda et al., “A new germline RET mutation apparently devoid of transforming activity serendipitously discovered in a patient with atrophic autoimmune thyroiditis and primary ovarian failure,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 10, pp. 4810–4816, 2004. View at Publisher · View at Google Scholar · View at Scopus
  84. B. Cosci, A. Vivaldi, C. Romei et al., “In silico and in vitro analysis of rare germline allelic variants of RET oncogene associated with medullary thyroid cancer,” Endocrine-Related Cancer, vol. 18, no. 5, pp. 603–612, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. J. R. Hansford and L. M. Mulligan, “Multiple endocrine neoplasia type 2 and RET: from neoplasia to neurogenesis,” Journal of Medical Genetics, vol. 37, no. 11, pp. 817–827, 2000. View at Google Scholar · View at Scopus
  86. K. M. Zbuk and C. Eng, “Cancer phenomics: RET and PTEN as illustrative models,” Nature Reviews Cancer, vol. 7, no. 1, pp. 35–45, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. A. Miyauchi, H. Futami, N. Hai et al., “Two germline missense mutations at codons 804 and 806 of the RET proto-oncogene in the same allele in a patient with multiple endocrine neoplasia type 2B without codon 918 mutation,” Japanese Journal of Cancer Research, vol. 90, no. 1, pp. 1–5, 1999. View at Google Scholar · View at Scopus
  88. F. H. Menko, R. B. Van Der Luijt, I. A. J. De Valk et al., “Atypical MEN type 2B associated with two germline RET mutations on the same allele not involving codon 918,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 1, pp. 393–397, 2002. View at Publisher · View at Google Scholar · View at Scopus
  89. K. Frank-Raue, S. Rondot, and F. Raue, “Molecular genetics and phenomics of RET mutations: impact on prognosis of MTC,” Molecular and Cellular Endocrinology, vol. 322, no. 1-2, pp. 2–7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. R. Elisei, C. Romei, G. Renzini et al., “The timing of total thyroidectomy in RET gene mutation carriers could be personalized and safely planned on the basis of serum calcitonin: 18 Years experience at one single center,” Journal of Clinical Endocrinology and Metabolism, vol. 97, no. 2, pp. 426–435, 2012. View at Publisher · View at Google Scholar · View at Scopus
  91. A. Machens, S. Hauptmann, and H. Dralle, “Increased risk of lymph node metastasis in multifocal hereditary and sporadic medullary thyroid cancer,” World Journal of Surgery, vol. 31, no. 10, pp. 1960–1965, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. C. F. Russell, J. A. Van Heerden, and G. W. Sizemore, “The surgical management of medullary thyroid carcinoma,” Annals of Surgery, vol. 197, no. 1, pp. 42–48, 1983. View at Google Scholar · View at Scopus
  93. M. K. Walz and P. F. Alesina, “Single access retroperitoneoscopic adrenalectomy (SARA)-one step beyond in endocrine surgery,” Langenbeck's Archives of Surgery, vol. 394, no. 3, pp. 447–450, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. G. S. K. Lau, B. H. H. Lang, C. Y. Lo et al., “Prophylactic thyroidectomy in ethnic Chinese patients with multiple endocrine neoplasia type 2A syndrome after the introduction of genetic testing,” Hong Kong Medical Journal, vol. 15, no. 5, pp. 326–331, 2009. View at Google Scholar · View at Scopus
  95. V. Rohmer, G. Vidal-Trecan, A. Bourdelot et al., “Prognostic factors of disease-free survival after thyroidectomy in 170 young patients with a RET germline mutation: a multicenter study of the Groupe Français d'Etude des Tumeurs Endocrines,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 3, pp. E509–E518, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. S. I. Sherman, “Advances in chemotherapy of differentiated epithelial and medullary thyroid cancers,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 5, pp. 1493–1499, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. S. I. Sherman, “Cytotoxic chemotherapy for differentiated thyroid carcinoma,” Clinical Oncology, vol. 22, no. 6, pp. 464–468, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. S. A. Wells Jr., B. G. Robinson, R. F. Gagel et al., “Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial,” Journal of Clinical Oncology, vol. 30, no. 2, pp. 134–141, 2012. View at Publisher · View at Google Scholar · View at Scopus
  99. M. L. Gild, M. Bullock, B. G. Robinson, and R. Clifton-Bligh, “Multikinase inhibitors: a new option for the treatment of thyroid cancer,” Nature Reviews Endocrinology, vol. 7, no. 10, pp. 617–624, 2011. View at Publisher · View at Google Scholar · View at Scopus