Table of Contents Author Guidelines Submit a Manuscript
Journal of Ophthalmology
Volume 2011, Article ID 507037, 6 pages
http://dx.doi.org/10.1155/2011/507037
Review Article

Cellular Origin of Spontaneous Ganglion Cell Spike Activity in Animal Models of Retinitis Pigmentosa

1Program in Neurobiology and Behavior, Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
2Department of Neurophysiology, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland

Received 1 July 2010; Accepted 7 September 2010

Academic Editor: Ian M. MacDonald

Copyright © 2011 David J. Margolis and Peter B. Detwiler. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. N. Bramall et al., “The genomic, biochemical, and cellular responses of the retina in inherited photoreceptor degenerations and prospects for the treatment of these disorders,” Annual Review of Neuroscience, vol. 33, pp. 441–472, 2010. View at Google Scholar
  2. J. D. Weiland, W. Liu, and M. S. Humayun, “Retinal prosthesis,” Annual Review of Biomedical Engineering, vol. 7, pp. 361–401, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Bi, J. Cui, Y.-P. Ma et al., “Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration,” Neuron, vol. 50, no. 1, pp. 23–33, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. P. S. Lagali, D. Balya, G. B. Awatramani et al., “Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration,” Nature Neuroscience, vol. 11, no. 6, pp. 667–675, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Lin, A. Koizumi, N. Tanaka, S. Panda, and R. H. Masland, “Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 41, pp. 16009–16014, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Tomita, E. Sugano, H. Yawo et al., “Restoration of visual response in aged dystrophic RCS rats using AAV-mediated channelopsin-2 gene transfer,” Investigative Ophthalmology and Visual Science, vol. 48, no. 8, pp. 3821–3826, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Zhang, E. Ivanova, A. Bi, and Z.-H. Pan, “Ectopic expression of multiple microbial rhodopsins restores ON and OFF light responses in retinas with photoreceptor degeneration,” Journal of Neuroscience, vol. 29, no. 29, pp. 9186–9196, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Busskamp, J. Duebel, D. Balya et al., “Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa,” Science, vol. 329, no. 5990, pp. 413–417, 2010. View at Publisher · View at Google Scholar
  9. S. Thyagarajan, M. Van Wyk, K. Lehmann, S. Löwel, G. Feng, and H. Wässle, “Visual function in mice with photoreceptor degeneration and transgenic expression of channelrhodopsin 2 in ganglion cells,” Journal of Neuroscience, vol. 30, no. 26, pp. 8745–8758, 2010. View at Publisher · View at Google Scholar
  10. B. W. Jones, C. B. Watt, J. M. Frederick et al., “Retinal remodeling triggered by photoreceptor degenerations,” Journal of Comparative Neurology, vol. 464, no. 1, pp. 1–16, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. R. E. Marc, B. W. Jones, J. R. Anderson et al., “Neural reprogramming in retinal degeneration,” Investigative Ophthalmology and Visual Science, vol. 48, no. 7, pp. 3364–3371, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. R. E. Marc, B. W. Jones, C. B. Watt, and E. Strettoi, “Neural remodeling in retinal degeneration,” Progress in Retinal and Eye Research, vol. 22, no. 5, pp. 607–655, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Strettoi, V. Pignatelli, C. Rossi, V. Porciatti, and B. Falsini, “Remodeling of second-order neurons in the retina of rd/rd mutant mice,” Vision Research, vol. 43, no. 8, pp. 867–877, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Strettoi, V. Porciatti, B. Falsini, V. Pignatelli, and C. Rossi, “Morphological and functional abnormalities in the inner retina of the rd/rd mouse,” Journal of Neuroscience, vol. 22, no. 13, pp. 5492–5504, 2002. View at Google Scholar · View at Scopus
  15. E. Strettoi and V. Pignatelli, “Modifications of retinal neurons in a mouse model of retinitis pigmentosa,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 20, pp. 11020–11025, 2000. View at Google Scholar · View at Scopus
  16. U. C. Drager and D. H. Hubel, “Studies of visual function and its decay in mice with hereditary retinal degeneration,” Journal of Comparative Neurology, vol. 180, no. 1, pp. 85–114, 1978. View at Google Scholar · View at Scopus
  17. Y. Sauvé, S. V. Girman, S. Wang, J. M. Lawrence, and R. D. Lund, “Progressive visual sensitivity loss in the Royal College of Surgeons rat: perimetric study in the superior colliculus,” Neuroscience, vol. 103, no. 1, pp. 51–63, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Lu, P. Coffey, and R. Lund, “Increased c-Fos-like immunoreactivity in the superior colliculus and lateral geniculate nucleus of the rd mouse,” Brain Research, vol. 1025, no. 1-2, pp. 220–225, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Lu, R. D. Lund, and P. J. Coffey, “Basal increase in c-Fos-like expression in superior colliculus of Royal College of Surgeons dystrophic rats can be abolished by intraocular injection of tetrodotoxin,” Neuroscience, vol. 107, no. 1, pp. 109–115, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Pu, L. Xu, and H. Zhang, “Visual response properties of retinal ganglion cells in the royal college of surgeons dystrophic rat,” Investigative Ophthalmology and Visual Science, vol. 47, no. 8, pp. 3579–3585, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. S. F. Stasheff, “Emergence of sustained spontaneous hyperactivity and temporary preservation of OFF responses in ganglion cells of the retinal degeneration (rd1) mouse,” Journal of Neurophysiology, vol. 99, no. 3, pp. 1408–1421, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Sekirnjak, C. Hulse, L. H. Jepson et al., “Loss of responses to visual but not electrical stimulation in ganglion cells of rats with severe photoreceptor degeneration,” Journal of Neurophysiology, vol. 102, no. 6, pp. 3260–3269, 2009. View at Publisher · View at Google Scholar
  23. D. J. Margolis, G. Newkirk, T. Euler, and P. B. Detwiler, “Functional stability of retinal ganglion cells after degeneration-induced changes in synaptic input,” Journal of Neuroscience, vol. 28, no. 25, pp. 6526–6536, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. D. J. Margolis and P. B. Detwiler, “Different mechanisms generate maintained activity in ON and OFF retinal ganglion cells,” Journal of Neuroscience, vol. 27, no. 22, pp. 5994–6005, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Euler, S. E. Hausselt, D. J. Margolis et al., “Eyecup scope-optical recordings of light stimulus-evoked fluorescence signals in the retina,” Pflugers Archiv European Journal of Physiology, vol. 457, no. 6, pp. 1393–1414, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Mazzoni, E. Novelli, and E. Strettoi, “Retinal ganglion cells survive and maintain normal dendritic morphology in a mouse model of inherited photoreceptor degeneration,” Journal of Neuroscience, vol. 28, no. 52, pp. 14282–14292, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. D. J. Margolis, A. J. Gartland, T. Euler, and P. B. Detwiler, “Dendritic calcium signaling in on and off mouse retinal ganglion cells,” Journal of Neuroscience, vol. 30, no. 21, pp. 7127–7138, 2010. View at Publisher · View at Google Scholar
  28. B. W. Jones and R. E. Marc, “Retinal remodeling during retinal degeneration,” Experimental Eye Research, vol. 81, no. 2, pp. 123–137, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. R. E. Marc and B. W. Jones, “Retinal remodeling in inherited photoreceptor degenerations,” Molecular Neurobiology, vol. 28, no. 2, pp. 139–147, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Varela, I. Igartua, E. J. De La Rosa, and P. De La Villa, “Functional modifications in rod bipolar cells in a mouse model of retinitis pigmentosa,” Vision Research, vol. 43, no. 8, pp. 879–885, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Hutcheon and Y. Yarom, “Resonance, oscillation and the intrinsic frequency preferences of neurons,” Trends in Neurosciences, vol. 23, no. 5, pp. 216–222, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Petit-Jacques, B. Völgyi, B. Rudy, and S. Bloomfield, “Spontaneous oscillatory activity of starburst amacrine cells in the mouse retina,” Journal of Neurophysiology, vol. 94, no. 3, pp. 1770–1780, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Vigh, E. Solessio, C. W. Morgans, and E. M. Lasater, “Ionic mechanisms mediating oscillatory membrane potentials in wide-field retinal amacrine cells,” Journal of Neurophysiology, vol. 90, no. 1, pp. 431–443, 2003. View at Google Scholar · View at Scopus
  34. A. Feigenspan, S. Gustincich, B. P. Bean, and E. Raviola, “Spontaneous activity of solitary dopaminergic cells of the retina,” Journal of Neuroscience, vol. 18, no. 17, pp. 6776–6789, 1998. View at Google Scholar · View at Scopus
  35. M. A. Steffen, C. A. Seay, B. Amini et al., “Spontaneous activity of dopaminergic retinal neurons,” Biophysical Journal, vol. 85, no. 4, pp. 2158–2169, 2003. View at Google Scholar · View at Scopus
  36. T. Puthussery, J. Gayet-Primo, S. Pandey, R. M. Duvoisin, and W. R. Taylor, “Differential loss and preservation of glutamate receptor function in bipolar cells in the rd10 mouse model of retinitis pigmentosa,” European Journal of Neuroscience, vol. 29, no. 8, pp. 1533–1542, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. P. B. Detwiler, A. L. Hodgkin, and P. A. McNaughton, “Temporal and spatial characteristics of the voltage response of rods in the retina of the snapping turtle,” Journal of Physiology, vol. 300, pp. 213–250, 1980. View at Google Scholar · View at Scopus
  38. W. Radner, S. R. Sadda, M. S. Humayun, S. Suzuki, and E. De Juan Jr., “Increased spontaneous retinal ganglion cell activity in rd mice after neural retinal transplantation,” Investigative Ophthalmology and Visual Science, vol. 43, no. 9, pp. 3053–3058, 2002. View at Google Scholar · View at Scopus
  39. J. F. Amos, “Differential diagnosis of common etiologies of photopsia,” Journal of the American Optometric Association, vol. 70, no. 8, pp. 485–504, 1999. View at Google Scholar · View at Scopus
  40. F. E. Lepore, “Spontaneous visual phenomena with visual loss: 104 patients with lesions of retinal and neural afferent pathways,” Neurology, vol. 40, no. 3, part 1, pp. 444–447, 1990. View at Google Scholar · View at Scopus
  41. T. Murtha and S. F. Stasheff, “Visual dysfunction in retinal and optic nerve disease,” Neurologic Clinics, vol. 21, no. 2, pp. 445–481, 2003. View at Publisher · View at Google Scholar · View at Scopus