Table of Contents Author Guidelines Submit a Manuscript
Journal of Pregnancy
Volume 2012, Article ID 631038, 10 pages
http://dx.doi.org/10.1155/2012/631038
Review Article

Developmental Programming in Response to Intrauterine Growth Restriction Impairs Myoblast Function and Skeletal Muscle Metabolism

1Department of Animal Sciences, The University of Arizona, Tucson, AZ 85721-0038, USA
2Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
3Agricultural Research Complex, Department of Animal Sciences, The University of Arizona, 1650 E. Limberlost Dr., Tucson, AZ 85719, USA

Received 1 April 2012; Accepted 25 May 2012

Academic Editor: Timothy Regnault

Copyright © 2012 D. T. Yates et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Saleem, N. Sajjad, S. Fatima, N. Habib, S. Ali, and M. Qadir, “Intrauterine growth retardation-small events, big consequences,” Italian Journal of Pediatrics, vol. 37, p. 41, 2011. View at Publisher · View at Google Scholar
  2. V. Berghella, “Prevention of recurrent fetal growth restriction,” Obstetrics and Gynecology, vol. 110, no. 4, pp. 904–912, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Alisi, N. Panera, C. Agostoni, and V. Nobili, “Intrauterine growth retardation and nonalcoholic fatty liver disease in children,” International Journal of Endocrinology, vol. 2011, Article ID 269853, 8 pages, 2011. View at Publisher · View at Google Scholar
  4. C. N. Hales and D. J. P. Barker, “Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis,” Diabetologia, vol. 35, no. 7, pp. 595–601, 1992. View at Publisher · View at Google Scholar · View at Scopus
  5. C. N. Hales and D. J. P. Barker, “The thrifty phenotype hypothesis,” British Medical Bulletin, vol. 60, pp. 5–20, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. D. E. Flanagan, V. M. Moore, I. F. Godsland, R. A. Cockington, J. S. Robinson, and D. I. Phillips, “Fetal growth and the physiological control of glucose tolerance in adults: a minimal model analysis,” American Journal of Physiology-Endocrinology and Metabolism, vol. 278, no. 4, pp. E700–E706, 2000. View at Google Scholar
  7. V. Mericq, K. K. Ong, R. Bazaes et al., “Longitudinal changes in insulin sensitivity and secretion from birth to age three years in small- and appropriate-for-gestational-age children,” Diabetologia, vol. 48, no. 12, pp. 2609–2614, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. K. K. L. Ong, M. L. Ahmed, D. B. Dunger, P. M. Emmett, and M. A. Preece, “Association between postnatal catch-up growth and obesity in childhood: prospective cohort study,” British Medical Journal, vol. 320, no. 7240, pp. 967–971, 2000. View at Google Scholar · View at Scopus
  9. M. H. Vickers, B. H. Breier, W. S. Cutfield, P. L. Hofman, and P. D. Gluckman, “Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition,” American Journal of Physiology-Endocrinology and Metabolism, vol. 279, no. 1, pp. E83–E87, 2000. View at Google Scholar
  10. D. J. P. Barker, C. N. Hales, C. H. D. Fall, C. Osmond, K. Phipps, and P. M. S. Clark, “Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth,” Diabetologia, vol. 36, no. 1, pp. 62–67, 1993. View at Publisher · View at Google Scholar · View at Scopus
  11. A. C. J. Ravelli, J. H. P. Van Der Meulen, R. P. J. Michels et al., “Glucose tolerance in adults after prenatal exposure to famine,” The Lancet, vol. 351, no. 9097, pp. 173–177, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. C. A. Newsome, A. W. Shiell, C. H. D. Fall, D. I. W. Phillips, R. Shier, and C. M. Law, “Is birth weight related to later glucose and insulin metabolism?—A systematic review,” Diabetic Medicine, vol. 20, no. 5, pp. 339–348, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. K. L. Gatford, R. A. Simmons, M. J. De Blasio, J. S. Robinson, and J. A. Owens, “Review: placental programming of postnatal diabetes and impaired insulin action after IUGR,” Placenta, vol. 31, pp. S60–S65, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. W. W. Hay Jr and P. Thureen, “Protein for preterm infants: how much is needed? How much is enough? How much is too much?” Pediatrics and Neonatology, vol. 51, no. 4, pp. 198–207, 2010. View at Google Scholar · View at Scopus
  15. A. Ghidini, “Idiopathic fetal growth restriction: a pathophysiologic approach,” Obstetrical and Gynecological Survey, vol. 51, no. 6, pp. 376–382, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Okamura, T. Watanabe, S. Tanigawara et al., “Catecholamine levels and their correlation to blood gases in umbilical venous blood obtained by cordocentesis,” Fetal Diagnosis and Therapy, vol. 5, no. 3-4, pp. 147–152, 1990. View at Google Scholar · View at Scopus
  17. C. M. Harwell, J. F. Padbury, R. S. Anand et al., “Fetal catecholamine responses to maternal hypoglycemia,” American Journal of Physiology-Regulatory Integrative and Comparative Physiology, vol. 259, no. 6, pp. R1126–R1130, 1990. View at Google Scholar · View at Scopus
  18. M. Phillippe and J. L. Kitzmiller, “The fetal and maternal catecholamine response to insulin-induced hypoglycemia in the rat,” American Journal of Obstetrics and Gynecology, vol. 139, no. 4, pp. 407–415, 1981. View at Google Scholar · View at Scopus
  19. W. R. Cohen, G. J. Piasecki, H. E. Cohn, J. B. Susa, and B. T. Jackson, “Sympathoadrenal responses during hypoglycemia, hyperinsulinemia, and hypoxemia in the ovine fetus,” American Journal of Physiology-Endocrinology and Metabolism, vol. 261, no. 1, pp. E95–E102, 1991. View at Google Scholar · View at Scopus
  20. B. T. Jackson, H. E. Cohn, S. H. Morrison, R. M. Baker, and G. J. Piasecki, “Hypoxia-induced sympathetic inhibition of the fetal plasma insulin response to hyperglycemia,” Diabetes, vol. 42, no. 11, pp. 1621–1625, 1993. View at Google Scholar · View at Scopus
  21. C. Y. Cheung, “Fetal adrenal medulla catecholamine response to hypoxia-direct and neural components,” American Journal of Physiology-Regulatory Integrative and Comparative Physiology, vol. 258, no. 6, pp. R1340–1346, 1990. View at Google Scholar · View at Scopus
  22. G. Y. Rychkov, M. B. Adams, I. C. McMillen, and M. L. Roberts, “Oxygen sensing mechanisms are present in the chromaffin cells of the sheep adrenal medulla before birth,” Journal of Physiology, vol. 509, no. 3, pp. 887–893, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Greenough, K. H. Nicolaides, and H. Lagercrantz, “Human fetal sympathoadrenal responsiveness,” Early Human Development, vol. 23, no. 1, pp. 9–13, 1990. View at Google Scholar · View at Scopus
  24. H. Lagercrantz, B. Sjoquist, and K. Bremme, “Catecholamine metabolites in amniotic fluid as indicators of intrauterine stress,” American Journal of Obstetrics and Gynecology, vol. 136, no. 8, pp. 1067–1070, 1980. View at Google Scholar · View at Scopus
  25. T. Hiraoka, T. Kudo, and Y. Kishimoto, “Catecholamines in experimentally growth-retarded rat fetus,” Asia-Oceania Journal of Obstetrics and Gynaecology, vol. 17, no. 4, pp. 341–348, 1991. View at Google Scholar · View at Scopus
  26. R. A. Leos, M. J. Anderson, X. Chen, J. Pugmire, K. A. Anderson, and S. W. Limesand, “Chronic exposure to elevated norepinephrine suppresses insulin secretion in fetal sheep with placental insufficiency and intrauterine growth restriction,” American Journal of Physiology-Endocrinology and Metabolism, vol. 298, no. 4, pp. E770–E778, 2010. View at Publisher · View at Google Scholar
  27. S. W. Limesand, P. J. Rozance, G. O. Zerbe, J. C. Hutton, and W. W. Hay Jr, “Attenuated insulin release and storage in fetal sheep pancreatic islets with intrauterine growth restriction,” Endocrinology, vol. 147, no. 3, pp. 1488–1497, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. C. T. Jones and J. S. Robinson, “Studies on experimental growth retardation in sheep. Plasma catecholamines in fetuses with small placenta,” Journal of Developmental Physiology, vol. 5, no. 2, pp. 77–87, 1983. View at Google Scholar · View at Scopus
  29. V. M. Altan, E. Arioglu, S. Guner, and A. T. Ozcelikay, “The influence of diabetes on cardiac β-adrenoceptor subtypes,” Heart Failure Reviews, vol. 12, no. 1, pp. 58–65, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Schaak, J. Mialet-Perez, C. Flordellis, and H. Paris, “Genetic variation of human adrenergic receptors: from molecular and functional properties to clinical and pharmacogenetic implications,” Current Topics in Medicinal Chemistry, vol. 7, no. 2, pp. 217–231, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. H. G. Dohlman, J. Thorner, M. G. Caron, and R. J. Lefkowitz, “Model systems for the study of seven-transmembrane-segment receptors,” Annual Review of Biochemistry, vol. 60, pp. 653–688, 1991. View at Google Scholar
  32. R. C. Goodlin and E. W. Lowe, “A functional umbilical cord occlusion heart rate pattern. The significance of overshoot,” Obstetrics and Gynecology, vol. 43, no. 1, pp. 22–30, 1974. View at Google Scholar · View at Scopus
  33. J. S. Robinson, C. T. Jones, and G. D. Thorburn, “The effects of hypoxaemia in fetal sheep,” Journal of Clinical Pathology, vol. 11, pp. 127–133, 1977. View at Google Scholar · View at Scopus
  34. W. W. Hay Jr, “Nutrition and development of the fetus: carbohydrate and lipid metabolism,” in Nutrition in Pediatrics (Basic Science and Clinical Applications), W. Walker, J. Watkins, and C. Duggan, Eds., pp. 449–470, BC Decker, Ontario, Canada, 2003. View at Google Scholar
  35. B. T. Jackson, G. J. Piasecki, H. E. Cohn, and W. R. Cohen, “Control of fetal insulin secretion,” American Journal of Physiology-Regulatory Integrative and Comparative Physiology, vol. 279, no. 6, pp. R2179–R2188, 2000. View at Google Scholar · View at Scopus
  36. M. A. Sperling, R. A. Christensen, S. Ganguli, and R. Anand, “Adrenergic modulation of pancreatic hormone secretion in utero: studies in fetal sheep,” Pediatric Research, vol. 14, no. 3, pp. 203–208, 1980. View at Google Scholar · View at Scopus
  37. D. T. Yates, A. S. Green, and S. W. Limesand, “Catecholamines mediate multiple fetal adaptations during placental insufficiency that contribute to intrauterine growth restriction: lessons from hyperthermic sheep,” Journal of Pregnancy, vol. 2011, Article ID 740408, 9 pages, 2011. View at Publisher · View at Google Scholar
  38. R. H. Lane, A. K. Chandorkar, A. S. Flozak, and R. A. Simmons, “Intrauterine growth retardation alters mitochondrial gene expression and function in fetal and juvenile rat skeletal muscle,” Pediatric Research, vol. 43, no. 5, pp. 563–570, 1998. View at Google Scholar · View at Scopus
  39. S. W. Limesand, P. J. Rozance, L. D. Brown, and W. W. Hay Jr, “Effects of chronic hypoglycemia and euglycemic correction on lysine metabolism in fetal sheep,” American Journal of Physiology-Endocrinology and Metabolism, vol. 296, no. 4, pp. E879–E887, 2009. View at Google Scholar
  40. L. C. P. Van Veen, C. Teng, and W.W. Hay Jr, “Leucine disposal and oxidation rates in the fetal lamb,” Metabolism, vol. 36, no. 1, pp. 48–53, 1987. View at Google Scholar
  41. T. D. Carver, A. A. Quick, C. C. Teng, A. W. Pike, P. V. Fennessey, and W. W. Hay Jr, “Leucine metabolism in chronically hypoglycemic hypoinsulinemic growth- restricted fetal sheep,” American Journal of Physiology-Endocrinology and Metabolism, vol. 272, no. 1, pp. E107–E117, 1997. View at Google Scholar · View at Scopus
  42. H. L. Galan, R. V. Anthony, S. Rigano et al., “Fetal hypertension and abnormal Doppler velocimetry in an ovine model of intrauterine growth restriction,” American Journal of Obstetrics and Gynecology, vol. 192, no. 1, pp. 272–279, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. T. R. H. Regnault, B. de Vrijer, H. L. Galan, R. B. Wilkening, F. C. Battaglia, and G. Meschia, “Development and mechanisms of fetal hypoxia in severe fetal growth restriction,” Placenta, vol. 28, no. 7, pp. 714–723, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. X. Chen, A. L. Fahy, A. S. Green, M. J. Anderson, R. P. Rhoads, and S. W. Limesand, “β2-Adrenergic receptor desensitization in perirenal adipose tissue in fetuses and lambs with placental insufficiency-induced intrauterine growth restriction,” Journal of Physiology, vol. 588, no. 18, pp. 3539–3549, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. M. J. Zhu, S. P. Ford, W. J. Means, B. W. Hess, P. W. Nathanielsz, and M. Du, “Maternal nutrient restriction affects properties of skeletal muscle in offspring,” Journal of Physiology, vol. 575, no. 1, pp. 241–250, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Germani, A. Puglianiello, and S. Cianfarani, “Uteroplacental insufficiency down regulates insulin receptor and affects expression of key enzymes of long-chain fatty acid (LCFA) metabolism in skeletal muscle at birth,” Cardiovascular Diabetology, vol. 7, p. 14, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. S. W. Limesand, P. J. Rozance, D. Smith, and W. W. Hay Jr, “Increased insulin sensitivity and maintenance of glucose utilization rates in fetal sheep with placental insufficiency and intrauterine growth restriction,” American Journal of Physiology-Endocrinology and Metabolism, vol. 293, no. 6, pp. E1716–E1725, 2007. View at Google Scholar
  48. S. R. Thorn, T. R. H. Regnault, L. D. Brown et al., “Intrauterine growth restriction increases fetal hepatic gluconeogenic capacity and reduces messenger ribonucleic acid translation initiation and nutrient sensing in fetal liver and skeletal muscle,” Endocrinology, vol. 150, no. 7, pp. 3021–3030, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. S. W. Limesand and W. W. Hay Jr, “Adaptation of ovine fetal pancreatic insulin secretion to chronic hypoglycaemia and euglycaemic correction,” Journal of Physiology, vol. 547, no. 1, pp. 95–105, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. P. J. Rozance, S. W. Limesand, J. S. Barry, L. D. Brown, and W. W. Hay Jr, “Glucose replacement to euglycemia causes hypoxia, acidosis, and decreased insulin secretion in fetal sheep with intrauterine growth restriction,” Pediatric Research, vol. 65, no. 1, pp. 72–78, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Padoan, S. Rigano, E. Ferrazzi, B. L. Beaty, F. C. Battaglia, and H. L. Galan, “Differences in fat and lean mass proportions in normal and growth-restricted fetuses,” American Journal of Obstetrics and Gynecology, vol. 191, no. 4, pp. 1459–1464, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. G. Larciprete, H. Valensise, G. Di Pierro et al., “Intrauterine growth restriction and fetal body composition,” Ultrasound in Obstetrics and Gynecology, vol. 26, no. 3, pp. 258–262, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. P. L. Greenwood, A. S. Hunt, J. W. Hermanson, and A. W. Bell, “Effects of birth weight and postnatal nutrition on neonatal sheep: II. Skeletal muscle growth and development,” Journal of Animal Science, vol. 78, no. 1, pp. 50–61, 2000. View at Google Scholar · View at Scopus
  54. P. L. Greenwood, R. M. Slepetis, J. W. Hermanson, and A. W. Bell, “Intrauterine growth retardation is associated with reduced cell cycle activity, but not myofibre number, in ovine fetal muscle,” Reproduction, Fertility and Development, vol. 11, no. 4-5, pp. 281–291, 1999. View at Google Scholar · View at Scopus
  55. S. J. Wilson, J. C. McEwan, P. W. Sheard, and A. J. Harris, “Early stages of myogenesis in a large mammal: formation of successive generations of myotubes in sheep tibialis cranialis muscle,” Journal of Muscle Research and Cell Motility, vol. 13, no. 5, pp. 534–550, 1992. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Maier, J. C. McEwan, K. G. Dodds, D. A. Fischman, R. B. Fitzsimons, and A. J. Harris, “Myosin heavy chain composition of single fibres and their origins and distribution in developing fascicles of sheep tibialis cranialis muscles,” Journal of Muscle Research and Cell Motility, vol. 13, no. 5, pp. 551–572, 1992. View at Publisher · View at Google Scholar · View at Scopus
  57. M. J. Zhu, S. P. Ford, P. W. Nathanielsz, and M. Du, “Effect of maternal nutrient restriction in sheep on the development of fetal skeletal muscle,” Biology of Reproduction, vol. 71, no. 6, pp. 1968–1973, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. S. P. Quigley, D. O. Kleemann, M. A. Kakar et al., “Myogenesis in sheep is altered by maternal feed intake during the peri-conception period,” Animal Reproduction Science, vol. 87, no. 3-4, pp. 241–251, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Winick and A. Noble, “Quantitative changes in DNA, RNA, and protein during prenatal and postnatal growth in the rat,” Developmental Biology, vol. 12, no. 3, pp. 451–466, 1965. View at Google Scholar · View at Scopus
  60. R. E. Allen, R. A. Merkel, and R. B. Young, “Cellular aspects of muscle growth: myogenic cell proliferation,” Journal of Animal Science, vol. 49, no. 1, pp. 115–127, 1979. View at Google Scholar · View at Scopus
  61. H. J. Swatland, “Accumulation of myofiber nuclei in pigs with normal and arrested development,” Journal of Animal Science, vol. 44, no. 5, pp. 759–764, 1977. View at Google Scholar · View at Scopus
  62. A. Trenkle, D. L. DeWitt, and D. G. Topel, “Influence of age, nutrition and genotype on carcass traits and cellular development of the M. Longissimus of cattle,” Journal of Animal Science, vol. 46, no. 6, pp. 1597–1603, 1978. View at Google Scholar
  63. S. A. Harbison, D. E. Goll, and F. C. Parrish, “Muscle growth in two genetically different lines of swine,” Growth, vol. 40, no. 3, pp. 253–283, 1976. View at Google Scholar · View at Scopus
  64. R. W. Ten Broek, S. Grefte, and J. W. Von Den Hoff, “Regulatory factors and cell populations involved in skeletal muscle regeneration,” Journal of Cellular Physiology, vol. 224, no. 1, pp. 7–16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. T. A. Davis and M. L. Fiorotto, “Regulation of muscle growth in neonates,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 12, no. 1, pp. 78–85, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. F. P. Moss and C. P. Leblond, “Satellite cells as the source of nuclei in muscles of growing rats,” Anatomical Record, vol. 170, no. 4, pp. 421–435, 1971. View at Google Scholar · View at Scopus
  67. E. M. Widdowson, D. E. Crabb, and R. D. Milner, “Cellular development of some human organs before birth,” Archives of Disease in Childhood, vol. 47, no. 254, pp. 652–655, 1972. View at Google Scholar · View at Scopus
  68. P. M. Costello, A. Rowlerson, N. A. Astaman et al., “Peri-implantation and late gestation maternal undernutrition differentially affect fetal sheep skeletal muscle development,” Journal of Physiology, vol. 586, no. 9, pp. 2371–2379, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. J. M. Bassett and C. Hanson, “Catecholamines inhibit growth in fetal sheep in the absence of hypoxemia,” American Journal of Physiology-Regulatory Integrative and Comparative Physiology, vol. 274, no. 6, pp. R1536–R1545, 1998. View at Google Scholar · View at Scopus
  70. J. R. Milley, “Ovine fetal metabolism during norepinephrine infusion,” American Journal of Physiology-Endocrinology and Metabolism, vol. 273, no. 2, pp. E336–E347, 1997. View at Google Scholar · View at Scopus
  71. J. M. Bassett and C. Hanson, “Prevention of hypoinsulinemia modifies catecholamine effects in fetal sheep,” American Journal of Physiology-Regulatory Integrative and Comparative Physiology, vol. 278, no. 5, pp. R1171–R1181, 2000. View at Google Scholar · View at Scopus
  72. P. R. Shepherd, D. J. Withers, and K. Siddle, “Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling,” Biochemical Journal, vol. 333, no. 3, pp. 471–490, 1998. View at Google Scholar · View at Scopus
  73. K. Bouzakri, H. K. R. Karlsson, H. Vestergaard, S. Madsbad, E. Christiansen, and J. R. Zierath, “IRS-1 serine phosphorylation and insulin resistance in skeletal muscle from pancreas transplant recipients,” Diabetes, vol. 55, no. 3, pp. 785–791, 2006. View at Google Scholar · View at Scopus
  74. W. W. Hay Jr, J. E. DiGiacomo, H. K. Meznarich, K. Hirst, and G. Zerbe, “Effects of glucose and insulin on fetal glucose oxidation and oxygen consumption,” American Journal of Physiology-Endocrinology and Metabolism, vol. 256, no. 6, p. 19/6, 1989. View at Google Scholar · View at Scopus
  75. R. E. Allen, L. S. Luiten, and M. V. Dodson, “Effect of insulin and linoleic acid on satellite cell differentiation,” Journal of Animal Science, vol. 60, no. 6, pp. 1571–1579, 1985. View at Google Scholar · View at Scopus
  76. J. Castillo, M. Codina, M. L. Martinez, I. Navarro, and J. Gutierrez, “Metabolic and mitogenic effects of IGF-I and insulin on muscle cells of rainbow trout,” American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol. 286, no. 5, pp. R935–R941, 2004. View at Google Scholar
  77. M. Vandromme, A. Rochat, R. Meier et al., “Protein Kinase B β/Akt2 Plays a Specific Role in Muscle Differentiation,” Journal of Biological Chemistry, vol. 276, no. 11, pp. 8173–8179, 2001. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Sumitani, K. Goya, J. R. Testa, H. Kouhara, and S. Kasayama, “Akt1 and Akt2 differently regulate muscle creatine kinase and myogenin gene transcription in insulin-induced differentiation of C2C12 myoblasts,” Endocrinology, vol. 143, no. 3, pp. 820–828, 2002. View at Publisher · View at Google Scholar · View at Scopus
  79. M. R. Calera and P. F. Pilch, “Induction of Akt-2 correlates with differentiation in Sol8 muscle cells,” Biochemical and Biophysical Research Communications, vol. 251, no. 3, pp. 835–841, 1998. View at Publisher · View at Google Scholar · View at Scopus
  80. L. D. Brown, P. J. Rozance, J. S. Barry, J. E. Friedman, and W. W. Hay Jr, “Insulin is required for amino acid stimulation of dual pathways for translational control in skeletal muscle in the late-gestation ovine fetus,” American Journal of Physiology-Endocrinology and Metabolism, vol. 296, no. 1, pp. E56–E63, 2009. View at Google Scholar
  81. L. D. Brown and W. W. Hay Jr, “Effect of hyperinsulinemia on amino acid utilization and oxidation independent of glucose metabolism in the ovine fetus,” American Journal of Physiology-Endocrinology and Metabolism, vol. 291, no. 6, pp. E1333–E1340, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. J. M. M. Harper, J. B. Soar, and P. J. Buttery, “Changes in protein metabolism of ovine primary muscle cultures on treatment with growth hormone, insulin, insulin-like growth factor I or epidermal growth factor,” Journal of Endocrinology, vol. 112, no. 1, pp. 87–96, 1987. View at Google Scholar · View at Scopus
  83. M. A. Sperling, S. Ganguli, N. Leslie, and K. Landt, “Fetal-perinatal catecholamine secretion: role in perinatal glucose homeostasis,” The American Journal of Physiology, vol. 247, no. 1, pp. E69–74, 1984. View at Google Scholar · View at Scopus
  84. M. H. M. Lima, M. Ueno, A. C. P. Thirone, E. M. Rocha, C. R. O. Carvalho, and M. J. A. Saad, “Regulation of IRS-1/SHP2 interaction and AKT phosphorylation in animal models of insulin resistance,” Endocrine, vol. 18, no. 1, pp. 1–12, 2002. View at Google Scholar · View at Scopus
  85. J. Hoeks, M. A. Van Baak, M. K. C. Hesselink et al., “Effect of β1- and β2-adrenergic stimulation on energy expenditure, substrate oxidation, and UCP3 expression in humans,” American Journal of Physiology-Endocrinology and Metabolism, vol. 285, no. 4, pp. E775–E782, 2003. View at Google Scholar · View at Scopus
  86. G. Y. Carmen and S. M. Víctor, “Signalling mechanisms regulating lipolysis,” Cellular Signalling, vol. 18, no. 4, pp. 401–408, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. J. T. Tansey, C. Sztalryd, E. M. Hlavin, A. R. Kimmel, and C. Londos, “The central role of perilipin A in lipid metabolism and adipocyte lipolysis,” IUBMB Life, vol. 56, no. 7, pp. 379–385, 2004. View at Publisher · View at Google Scholar · View at Scopus
  88. M. M. Jost, P. Jost, J. Klein, and H. H. Klein, “The β3-adrenergic agonist CL316,243 inhibits insulin signaling but not glucose uptake in primary human adipocytes,” Experimental and Clinical Endocrinology and Diabetes, vol. 113, no. 8, pp. 418–422, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. P. Jost, M. Fasshauer, C. R. Kahn et al., “Atypical β-adrenergic effects on insulin signaling and action in β3-adrenoceptor-deficient brown adipocytes,” American Journal of Physiology-Endocrinology and Metabolism, vol. 283, no. 1, pp. E146–E153, 2002. View at Google Scholar · View at Scopus
  90. C. Morisco, G. Condorelli, V. Trimarco et al., “Akt mediates the cross-talk between β-adrenergic and insulin receptors in neonatal cardiomyocytes,” Circulation Research, vol. 96, no. 2, pp. 180–188, 2005. View at Publisher · View at Google Scholar · View at Scopus
  91. H. Wang, S. Doronin, and C. C. Malbon, “Insulin activation of mitogen-activated protein kinases Erk1,2 is amplified via β-adrenergic receptor expression and requires the integrity of the Tyr350 of the receptor,” Journal of Biological Chemistry, vol. 275, no. 46, pp. 36086–36093, 2000. View at Publisher · View at Google Scholar · View at Scopus
  92. A. L. Grant, W. G. Helferich, R. A. Merkel, and W. G. Bergen, “Effects of phenethanolamines and propranolol on the proliferation of cultured chick breast muscle satellite cells,” Journal of Animal Science, vol. 68, no. 3, pp. 652–658, 1990. View at Google Scholar · View at Scopus
  93. P. Roberts and J. K. McGeachie, “Long-term isoprenaline administration and its effect on the revascularisation and regeneration of skeletal muscle transplants in mice,” Journal of Anatomy, vol. 188, p. 3, 1996. View at Google Scholar · View at Scopus
  94. A. Lapillonne, P. Braillon, O. Claris, P. G. Chatelain, P. D. Delmas, and B. L. Salle, “Body composition in appropriate and in small for gestational age infants,” Acta Paediatrica, vol. 86, no. 2, pp. 196–200, 1997. View at Google Scholar · View at Scopus
  95. M. L. Hediger, M. D. Overpeck, R. J. Kuczmarski, A. McGlynn, K. R. Maurer, and W. W. Davis, “Muscularity and fatness of infants and young children born small- or large-for-gestational-age,” Pediatrics, vol. 102, no. 5, p. E60, 1998. View at Google Scholar · View at Scopus
  96. L. Ibáñez, K. Ong, D. B. Dunger, and F. De Zegher, “Early development of adiposity and insulin resistance after catch-up weight gain in small-for-gestational-age children,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 6, pp. 2153–2158, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. B. D. Bhatia, K. N. Agarwal, and N. P. Jain, “Muscle mass of intrauterine growth retarded babies in first nine months of life,” Indian Pediatrics, vol. 20, no. 9, pp. 671–676, 1983. View at Google Scholar · View at Scopus
  98. M. C. Lima, H. F. Dantas, R. J. M. Amorim, and P. I. C. Lira, “Does fetal growth restriction influence body composition at school age?” Jornal de Pediatria, vol. 87, no. 1, pp. 29–35, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. P. L. Greenwood, A. S. Hunt, J. W. Hermanson, and A. W. Bell, “Effects of birth weight and postnatal nutrition on neonatal sheep: I. Body growth and composition, and some aspects of energetic efficiency,” Journal of Animal Science, vol. 76, no. 9, pp. 2354–2367, 1998. View at Google Scholar · View at Scopus
  100. A. A. Sayer, H. E. Syddall, E. M. Dennison et al., “Birth weight, weight at 1 y of age, and body composition in older men: findings from the Hertfordshire Cohort Study,” The American Journal of Clinical Nutrition, vol. 80, no. 1, pp. 199–203, 2004. View at Google Scholar · View at Scopus
  101. C. R. Gale, C. N. Martyn, S. Kellingray, R. Eastell, and C. Cooper, “Intrauterine programming of adult body composition,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 1, pp. 267–272, 2001. View at Publisher · View at Google Scholar · View at Scopus
  102. H. Yliharsila, E. Kajantie, C. Osmond, T. Forsén, D. J. P. Barker, and J. G. Eriksson, “Birth size, adult body composition and muscle strength in later life,” International Journal of Obesity, vol. 31, no. 9, pp. 1392–1399, 2007. View at Publisher · View at Google Scholar · View at Scopus
  103. O. A. Kensara, S. A. Wootton, D. I. Phillips, M. Patel, A. A. Jackson, and M. Elia, “Fetal programming of body composition: relation between birth weight and body composition measured with dual-energy X-ray absorptiometry and anthropometric methods in older Englishmen,” American Journal of Clinical Nutrition, vol. 82, no. 5, pp. 980–987, 2005. View at Google Scholar · View at Scopus
  104. H. M. Inskip, K. M. Godfrey, H. J. Martin, S. J. Simmonds, C. Cooper, and A. A. Sayer, “and the Southampton Women's survey study G. size at birth and its relation to muscle strength in young adult women,” Journal of Internal Medicine, vol. 262, no. 3, pp. 368–374, 2007. View at Publisher · View at Google Scholar
  105. E. L. Rasmussen, C. Malis, C. B. Jensen et al., “Altered fat tissue distribution in young adult men who had low birth weight,” Diabetes Care, vol. 28, no. 1, pp. 151–153, 2005. View at Publisher · View at Google Scholar · View at Scopus
  106. D. I. W. Phillips, “Relation of fetal growth to adult muscle mass and glucose tolerance,” Diabetic Medicine, vol. 12, no. 8, pp. 686–690, 1995. View at Google Scholar · View at Scopus
  107. J. Eriksson, T. Forsén, J. Tuomilehto, C. Osmond, and D. Barker, “Size at birth, fat-free mass and resting metabolic rate in adult life,” Hormone and Metabolic Research, vol. 34, no. 2, pp. 72–76, 2002. View at Google Scholar · View at Scopus
  108. R. Bauer, T. Gedrange, K. Bauer, and B. Walter, “Intrauterine growth restriction induces increased capillary density and accelerated type I fiber maturation in newborn pig skeletal muscles,” Journal of Perinatal Medicine, vol. 34, no. 3, pp. 235–242, 2006. View at Publisher · View at Google Scholar · View at Scopus
  109. C. Chiristov, F. Chrétien, R. Abou-Khalil et al., “Muscle satellite cells and endothelial cells: close neighbors and privileged partners,” Molecular Biology of the Cell, vol. 18, no. 4, pp. 1397–1409, 2007. View at Publisher · View at Google Scholar · View at Scopus
  110. R. P. Rhoads, R. M. Johnson, C. R. Rathbone et al., “Satellite cell-mediated angiogenesis in vitro coincides with a functional hypoxia-inducible factor pathway,” American Journal of Physiology-Cell Physiology, vol. 296, no. 6, pp. C1321–C1328, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. J. C. Frisbee, F. Wu, A. G. Goodwill, J. T. Butcher, and D. A. Beard, “Spatial heterogeneity in skeletal muscle microvascular blood flow distribution is increased in the metabolic syndrome,” American Journal of Physiology-Regulatory Integrative and Comparative Physiology, vol. 301, no. 4, pp. R975–R986, 2011. View at Publisher · View at Google Scholar
  112. G. Messina and G. Cossu, “The origin of embryonic and fetal myoblasts: a role of Pax3 and Pax7,” Genes and Development, vol. 23, no. 8, pp. 902–905, 2009. View at Publisher · View at Google Scholar · View at Scopus
  113. F. R. Jornayvaz, R. Selz, L. Tappy, and G. E. Theintz, “Metabolism of oral glucose in children born small for gestational age: evidence for an impaired whole body glucose oxidation,” Metabolism, vol. 53, no. 7, pp. 847–851, 2004. View at Publisher · View at Google Scholar · View at Scopus
  114. T. S. Hermann, C. Rask-Madsen, N. Ihlemann et al., “Normal insulin-stimulated endothelial function and impaired insulin-stimulated muscle glucose uptake in young adults with low birth weight,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 3, pp. 1252–1257, 2003. View at Publisher · View at Google Scholar
  115. A. G. Dulloo, “Regulation of fat storage via suppressed thermogenesis: a thrifty phenotype that predisposes individuals with catch-up growth to insulin resistance and obesity,” Hormone Research, vol. 65, no. 3, pp. 90–97, 2006. View at Publisher · View at Google Scholar · View at Scopus
  116. A.c G. Dulloo, “Thrifty energy metabolism in catch-up growth trajectories to insulin and leptin resistance,” Best Practice and Research in Clinical Endocrinology and Metabolism, vol. 22, no. 1, pp. 155–171, 2008. View at Publisher · View at Google Scholar
  117. P. Cettour-Rose, S. Samec, A. P. Russell et al., “Redistribution of glucose from skeletal muscle to adipose tissue during catch-up fat: a link between catch-up growth and later metabolic syndrome,” Diabetes, vol. 54, no. 3, pp. 751–756, 2005. View at Publisher · View at Google Scholar · View at Scopus
  118. S. E. Powell and E. D. Aberle, “Skeletal muscle and adipose tissue cellularity in runt and normal birth weight swine,” Journal of Animal Science, vol. 52, no. 4, pp. 748–756, 1981. View at Google Scholar · View at Scopus
  119. S. E. Ozanne, C. B. Jensen, K. J. Tingey, H. Storgaard, S. Madsbad, and A. A. Vaag, “Low birthweight is associated with specific changes in muscle insulin-signalling protein expression,” Diabetologia, vol. 48, no. 3, pp. 547–552, 2005. View at Publisher · View at Google Scholar · View at Scopus
  120. E. J. Camm, M. S. Martin-Gronert, N. L. Wright, J. A. Hansell, S. E. Ozanne, and D. A. Giussani, “Prenatal hypoxia independent of undernutrition promotes molecular markers of insulin resistance in adult offspring,” FASEB Journal, vol. 25, no. 1, pp. 420–427, 2011. View at Publisher · View at Google Scholar · View at Scopus