Table of Contents Author Guidelines Submit a Manuscript
Journal of Robotics
Volume 2014, Article ID 217875, 6 pages
Research Article

Path Following of Autonomous Vehicle in 2D Space Using Multivariable Sliding Mode Control

State Key Laboratory of Robotics, Shenyang Institute of Automation, CAS, Shenyang 110016, China

Received 30 May 2014; Revised 12 August 2014; Accepted 13 August 2014; Published 20 August 2014

Academic Editor: Keigo Watanabe

Copyright © 2014 Daxiong Ji et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A solution to the path following problem for underactuated autonomous vehicles in the presence of possibly large modeling parametric uncertainty is proposed. For a general class of vehicles moving in 2D space, we demonstrated a path following control law based on multiple variable sliding mode that yields global boundedness and convergence of the position tracking error to a small neighborhood and robustness to parametric modeling uncertainty. An error integration element is added into the “tanh” function of the traditional sliding mode control. We illustrated our results in the context of the vehicle control applications that an underwater vehicle moves along with the desired paths in 2D space. Simulations show that the control objectives were accomplished.