Table of Contents Author Guidelines Submit a Manuscript
Journal of Sensors
Volume 2009 (2009), Article ID 524237, 20 pages
http://dx.doi.org/10.1155/2009/524237
Review Article

Microstructured and Photonic Bandgap Fibers for Applications in the Resonant Bio- and Chemical Sensors

Département de Génie Physique, Ecole Polytechnique de Montreal, C. P. 6079, succ. Centre-ville, Montréal, QC, Canada H3C 3A7

Received 3 March 2009; Accepted 2 June 2009

Academic Editor: Christos Riziotis

Copyright © 2009 Maksim Skorobogatiy. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. MacLean, C. Moran, W. Johnstone, B. Culshaw, D. Marsh, and P. Parker, “Detection of hydrocarbon fuel spills using a distributed fibre optic sensor,” Sensors and Actuators A, vol. 109, no. 1-2, pp. 60–67, 2003. View at Publisher · View at Google Scholar
  2. N. Kim, I.-S. Park, and W.-Y. Kim, “Salmonella detection with a direct-binding optical grating coupler immunosensor,” Sensors and Actuators B, vol. 121, no. 2, pp. 606–615, 2007. View at Publisher · View at Google Scholar
  3. S. Balasubramanian, I. B. Sorokulova, V. J. Vodyanoy, and A. L. Simonian, “Lytic phage as a specific and selective probe for detection of Staphylococcus aureus—a surface plasmon resonance spectroscopic study,” Biosensors and Bioelectronics, vol. 22, no. 6, pp. 948–955, 2007. View at Publisher · View at Google Scholar
  4. H. J. Watts, C. R. Lowe, and D. V. Pollard-Knight, “Optical biosensor for monitoring microbial cells,” Analytical Chemistry, vol. 66, no. 15, pp. 2465–2470, 1994. View at Google Scholar
  5. D. R. DeMarco and D. V. Lim, “Direct detection of Escherichia coli 0157:H7 in unpasteurized apple juice with an evanescent wave biosensor,” Journal of Rapid Methods and Automation in Microbiology, vol. 9, no. 4, pp. 241–257, 2001. View at Google Scholar
  6. J. R. E. Shepard, Y. Danin-Poleg, Y. Kashi, and D. R. Walt, “Array-based binary analysis for bacterial typing,” Analytical Chemistry, vol. 77, no. 1, pp. 319–326, 2005. View at Publisher · View at Google Scholar
  7. M. Zourob, S. Mohr, B. J. T. Brown, P. R. Fielden, M. B. McDonnell, and N. J. Goddard, “An integrated metal clad leaky waveguide sensor for detection of bacteria,” Analytical Chemistry, vol. 77, no. 1, pp. 232–242, 2005. View at Publisher · View at Google Scholar
  8. J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Optics Express, vol. 13, no. 15, pp. 5883–5889, 2005. View at Publisher · View at Google Scholar
  9. J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Measurement Science and Technology, vol. 15, no. 6, pp. 1120–1128, 2004. View at Publisher · View at Google Scholar
  10. S. O. Konorov, A. M. Zheltikov, and M. Scalora, “Photonic-crystal fiber as a multifunctional optical sensor and sample collector,” Optics Express, vol. 13, no. 9, pp. 3454–3459, 2005. View at Publisher · View at Google Scholar
  11. E. Pone, C. Dubois, N. Guo et al., “Drawing of the hollow all-polymer Bragg fibers,” Optics Express, vol. 14, no. 13, p. 5838, 2006. View at Google Scholar
  12. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature, vol. 420, no. 6916, pp. 650–653, 2002. View at Publisher · View at Google Scholar
  13. J. C. Knight, T. A. Birks, P. St. J. Russell, and J. G. Rarity, “Bragg scattering from an obliquely illuminated photonic crystal fiber,” Applied Optics, vol. 37, no. 3, pp. 449–452, 1998. View at Google Scholar
  14. P. St. J. Russell, “Photonic-crystal fibers,” Journal of Lightwave Technology, vol. 24, no. 12, pp. 4729–4749, 2006. View at Publisher · View at Google Scholar
  15. C. M. Smith, N. Venkataraman, M. T. Gallagher et al., “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature, vol. 424, no. 6949, pp. 657–659, 2003. View at Publisher · View at Google Scholar
  16. G. Vienne, Y. Xu, C. Jakobsen et al., “Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports,” Optics Express, vol. 12, no. 15, pp. 3500–3508, 2004. View at Publisher · View at Google Scholar
  17. A. Argyros, M. A. van Eijkelenborg, M. C. J. Large, and I. M. Bassett, “Hollow-core microstructured polymer optical fiber,” Optics Letters, vol. 31, no. 2, pp. 172–174, 2006. View at Publisher · View at Google Scholar
  18. J. A. Harrington, “Review of IR transmitting, hollow waveguides,” Fiber and Integrated Optics, vol. 19, no. 3, pp. 211–227, 2000. View at Google Scholar
  19. Y. W. Shi, K. Ito, Y. Matsuura, and M. Miyagi, “Multiwavelength laser light transmission of hollow optical fiber from the visible to the mid-infrared,” Optics Letters, vol. 30, no. 21, pp. 2867–2869, 2005. View at Publisher · View at Google Scholar
  20. Y. L. Hoo, W. Jin, H. L. Ho, J. Ju, and D. N. Wang, “Gas diffusion measurement using hollow-core photonic bandgap fiber,” Sensors and Actuators B, vol. 105, no. 2, pp. 183–186, 2005. View at Publisher · View at Google Scholar
  21. C. Charlton, B. Temelkuran, G. Dellemann, and B. Mizaikoff, “Midinfrared sensors meet nanotechnology: trace gas sensing with quantum cascade lasers inside photonic band-gap hollow waveguides,” Applied Physics Letters, vol. 86, no. 19, Article ID 194102, 3 pages, 2005. View at Publisher · View at Google Scholar
  22. F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Optics Express, vol. 14, no. 9, pp. 4135–4140, 2006. View at Publisher · View at Google Scholar
  23. S. Smolka, M. Barth, and O. Benson, “Highly efficient fluorescence sensing with hollow core photonic crystal fibers,” Optics Express, vol. 15, no. 20, pp. 12783–12791, 2007. View at Publisher · View at Google Scholar
  24. A. W. Snyder and J. Love, Optical Waveguide Theory, Springer, London, UK, 2nd edition, 2008.
  25. S. G. Johnson, M. Ibanescu, M. Skorobogatiy et al., “Low-loss asymptotically single-mode propagation in large-core omniguide fibers,” Optics Express, vol. 9, no. 13, pp. 748–779, 2001. View at Google Scholar
  26. M. Skorobogatiy, “Efficient antiguiding of TE and TM polarizations in low-index core waveguides without the need for an omnidirectional reflector,” Optics Letters, vol. 30, no. 22, pp. 2991–2993, 2005. View at Publisher · View at Google Scholar
  27. V. M. Agranovich and D. L. Mills, Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces, North-Holland, Amsterdam, The Netherlands, 1982.
  28. E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Naturforschung A, vol. 23, p. 2135, 1968. View at Google Scholar
  29. B. Liedberg, C. Nylander, and I. Lundström, “Surface plasmon resonance for gas detection and biosensing,” Sensors and Actuators, vol. 4, pp. 299–304, 1983. View at Google Scholar
  30. J. Melendez, R. Carr, D. U. Bartholomew et al., “A commercial solution for surface plasmon sensing,” Sensors and Actuators B, vol. 35, no. 1–3, pp. 212–216, 1996. View at Google Scholar
  31. L.-M. Zhang and D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electronics Letters, vol. 24, no. 23, pp. 1469–1470, 1988. View at Google Scholar
  32. A. V. Kabashin and P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Optics Communications, vol. 150, no. 1–6, pp. 5–8, 1998. View at Google Scholar
  33. A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Applied Physics Letters, vol. 75, no. 25, pp. 3917–3919, 1999. View at Google Scholar
  34. M. Manuel, B. Vidal, R. López et al., “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sensors and Actuators B, vol. 11, no. 1–3, pp. 455–459, 1993. View at Google Scholar
  35. R. Alonso, J. Subias, J. Pelayo, F. Villuendas, and J. Tornos, “Single-mode, optical-fiber sensors and tunable wavelength filters based on the resonant excitation of metal-clad modes,” Applied Optics, vol. 33, no. 22, pp. 5197–5201, 1994. View at Google Scholar
  36. J. Homola, “Optical fiber sensor based on surface plasmon excitation,” Sensors and Actuators B, vol. 29, no. 1–3, pp. 401–405, 1995. View at Google Scholar
  37. A. J. C. Tubb, F. P. Payne, R. B. Millington, and C. R. Lowe, “Single-mode optical fibre surface plasma wave chemical sensor,” Sensors and Actuators B, vol. 41, no. 1–3, pp. 71–79, 1997. View at Google Scholar
  38. J. Homola, J. Čtyrocký, M. Skalský, J. Hradilová, and P. Kolárová, “A surface plasmon resonance based integrated optical sensor,” Sensors and Actuators B, vol. 39, no. 1–3, pp. 286–290, 1997. View at Google Scholar
  39. A. Díez, M. V. Andrés, and J. L. Cruz, “In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers,” Sensors and Actuators B, vol. 73, no. 2-3, pp. 95–99, 2001. View at Publisher · View at Google Scholar
  40. M. Piliarik, J. Homola, Z. Maníková, and J. Čtyroký, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sensors and Actuators B, vol. 90, no. 1–3, pp. 236–242, 2003. View at Publisher · View at Google Scholar
  41. D. Monzón-Hernández, J. Villatoro, D. Talavera, and D. Luna-Moreno, “Optical-fiber surface-plasmon resonance sensor with multiple resonance peaks,” Applied Optics, vol. 43, no. 6, pp. 1216–1220, 2004. View at Google Scholar
  42. D. Monzón-Hernández and J. Villatoro, “High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor,” Sensors and Actuators B, vol. 115, no. 1, pp. 227–231, 2006. View at Publisher · View at Google Scholar
  43. H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Fundamental characteristics of a dual-colour fibre optic SPR sensor,” Measurement Science and Technology, vol. 17, no. 6, pp. 1547–1552, 2006. View at Publisher · View at Google Scholar
  44. S. J. Al-Bader and M. Imtaar, “Optical fiber hybrid-surface plasmon polaritons,” Journal of the Optical Society of America B, vol. 10, p. 83, 1993. View at Google Scholar
  45. R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sensors and Actuators B, vol. 12, no. 3, pp. 213–220, 1993. View at Google Scholar
  46. A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure and Applied Optics, vol. 5, no. 2, pp. 227–237, 1996. View at Google Scholar
  47. J. Ctyrocký, J. Homola, P. V. Lambeck et al., “Theory and modelling of optical waveguide sensors utilising surface plasmon resonance,” Sensors and Actuators B, vol. 54, no. 1, pp. 66–73, 1999. View at Publisher · View at Google Scholar
  48. M. Weisser, B. Menges, and S. Mittler-Neher, “Refractive index and thickness determination of monolayers by multi mode waveguide coupled surface plasmons,” Sensors and Actuators B, vol. 56, no. 3, pp. 189–197, 1999. View at Publisher · View at Google Scholar
  49. B. D. Gupta and A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sensors and Actuators B, vol. 107, no. 1, pp. 40–46, 2005. View at Publisher · View at Google Scholar
  50. B. T. Kuhlmey, K. Pathmanandavel, and R. C. McPhedran, “Multipole analysis of photonic crystal fibers with coated inclusions,” Optics Express, vol. 14, no. 22, pp. 10851–10864, 2006. View at Publisher · View at Google Scholar
  51. A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Optics Express, vol. 14, no. 24, pp. 11616–11621, 2006. View at Publisher · View at Google Scholar
  52. B. Gauvreau, A. Hassani, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Optics Express, vol. 15, no. 18, pp. 11413–11426, 2007. View at Publisher · View at Google Scholar
  53. M. Skorobogatiy and A. V. Kabashin, “Photon crystal waveguide-based surface plasmon resonance biosensor,” Applied Physics Letters, vol. 89, no. 14, Article ID 211641, 2006. View at Publisher · View at Google Scholar
  54. C. R. Lavers and J. S. Wilkinson, “A waveguide-coupled surface-plasmon sensor for an aqueous environment,” Sensors and Actuators B, vol. 22, no. 1, pp. 75–81, 1994. View at Google Scholar
  55. R. D. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sensors and Actuators B, vol. 29, no. 1–3, pp. 261–267, 1995. View at Google Scholar
  56. M. N. Weiss, R. Srivastava, and H. Groger, “Experimental investigation of a surface plasmon-based integrated-optic humidity sensor,” Electronics Letters, vol. 32, no. 9, pp. 842–843, 1996. View at Google Scholar
  57. J. Dostáleka, J. Tyrokýa, J. Homola et al., “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sensors and Actuators B, vol. 76, no. 1–3, pp. 8–12, 2001. View at Publisher · View at Google Scholar
  58. A. K. Sheridan, R. D. Harris, P. N. Bartlett, and J. S. Wilkinson, “Phase interrogation of an integrated optical SPR sensor,” Sensors and Actuators B, vol. 97, no. 1, pp. 114–121, 2004. View at Publisher · View at Google Scholar
  59. A. Hassani and M. Skorobogatiy, “Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors,” Journal of the Optical Society of America B, vol. 24, no. 6, pp. 1423–1429, 2007. View at Publisher · View at Google Scholar
  60. C. M. B. Cordeiro, M. A. R. Franco, G. Chesini et al., “Microstructured-core optical fibre for evanescent sensing applications,” Optics Express, vol. 14, no. 26, pp. 13056–13066, 2006. View at Publisher · View at Google Scholar
  61. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” Journal of the Optical Society of America, vol. 55, pp. 1205–1209, 1965. View at Google Scholar
  62. S. Patskovsky, A. V. Kabashin, and M. Meunier, “Near-infrared surface plasmon resonance sensing on a Si platform with nanoparticle-based signal enhancement,” Optical Materials, vol. 27, no. 5, pp. 1093–1096, 2005. View at Publisher · View at Google Scholar
  63. L. O. Cinteza, T. Y. Ohulchanskyy, Y. Sahoo, E. J. Bergey, R. K. Pandey, and P. N. Prasad, “Diacyllipid micelle-based nanocarrier for magnetically guided delivery of drugs in photodynamic therapy,” Molecular Pharmaceutics, vol. 3, no. 4, pp. 415–423, 2006. View at Publisher · View at Google Scholar
  64. M. Skorobogatiy, “Efficient antiguiding of TE and TM polarizations in low-index core waveguides without the need for an omnidirectional reflector,” Optics Letters, vol. 30, no. 22, pp. 2991–2993, 2005. View at Publisher · View at Google Scholar
  65. Y. Gao, N. Guo, B. Gauvreau et al., “Consecutive solvent evaporation and co-rolling techniques for polymer multilayer hollow fiber preform fabrication,” Journal of Materials Research, vol. 21, no. 9, pp. 2246–2254, 2006. View at Publisher · View at Google Scholar
  66. T. Murao, K. Saitoh, and M. Koshiba, “Design of air-guiding modified honeycomb photonic band-gap fibers for effectively single-mode operation,” Optics Express, vol. 14, no. 6, pp. 2404–2412, 2006. View at Publisher · View at Google Scholar
  67. S. E. Barkou, J. Broeng, and A. Bjarklev, “Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect,” Optics Letters, vol. 24, no. 1, pp. 46–48, 1999. View at Google Scholar
  68. T. Hidaka, H. Minamide, H. Ito, J.-I. Nishizawa, K. Tamura, and S. Ichikawa, “Ferroelectric PVDF cladding terahertz waveguide,” Journal of Lightwave Technology, vol. 23, no. 8, pp. 2469–2473, 2005. View at Publisher · View at Google Scholar
  69. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Applied Physics Letters, vol. 92, no. 7, Article ID 071101, 2008. View at Publisher · View at Google Scholar
  70. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Optics Express, vol. 16, no. 9, pp. 6340–6351, 2008. View at Publisher · View at Google Scholar
  71. X. Zhang, R. Wang, F. M. Cox, B. T. Kuhlmey, and M. C. J. Large, “Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers,” Optics Express, vol. 15, no. 24, pp. 16270–16278, 2007. View at Publisher · View at Google Scholar
  72. X. Yang and L. Wang, “Silver nanocrystals modified microstructured polymer optical fibres for chemical and optical sensing,” Optics Communications, vol. 280, no. 2, pp. 368–373, 2007. View at Publisher · View at Google Scholar
  73. A. C. Peacock, A. Amezcua-Correa, J. Yang, P. J. A. Sazio, and S. M. Howdle, “Highly efficient surface enhanced Raman scattering using microstructured optical fibers with enhanced plasmonic interactions,” Applied Physics Letters, vol. 92, no. 14, Article ID 141113, 2008. View at Publisher · View at Google Scholar
  74. J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Optics Express, vol. 16, no. 9, pp. 5983–5990, 2008. View at Publisher · View at Google Scholar
  75. L. Ma, T. Katagiri, and Y. Matsuura, “Surface-plasmon resonance sensor using silica-core Bragg fiber,” Optics Letters, vol. 34, no. 7, pp. 1069–1071, 2009. View at Publisher · View at Google Scholar