Table of Contents Author Guidelines Submit a Manuscript
Journal of Sensors
Volume 2009, Article ID 607647, 12 pages
http://dx.doi.org/10.1155/2009/607647
Review Article

Planar Bragg Grating Sensors—Fabrication and Applications: A Review

1Stratophase Ltd, Unit A7, The Premier Centre, Premier Way, Romsey SO51 9DG, UK
2Theoretical and Physical Chemistry Institute, The National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece

Received 5 April 2009; Accepted 13 July 2009

Academic Editor: Valerio Pruneri

Copyright © 2009 I. J. G. Sparrow et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Analytica Chimica Acta, vol. 620, no. 1-2, pp. 8–26, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Microchannel-based refractive index sensors monolithically integrated with silica waveguides: structures and sensitivities,” IEEE Sensors Journal, vol. 8, no. 5, pp. 457–464, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Ctyroky, F. Abdelmalek, W. Ecke, and K. Usbeck, “Modelling of the surface plasmon resonance waveguide sensor with Bragg grating,” Optical and Quantum Electronics, vol. 31, no. 9, pp. 927–941, 1999. View at Google Scholar · View at Scopus
  4. G. Nemova and R. Kashyap, “A compact integrated planar-waveguide refractive-index sensor based on a corrugated metal grating,” Journal of Lightwave Technology, vol. 25, no. 8, pp. 2244–2250, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Nemova and R. Kashyap, “Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation,” Optics Communications, vol. 275, no. 1, pp. 76–82, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. S. A. Maier, Plasmonics: Fundamentals and Applications, Springer, New York, NY, USA, 2007.
  7. B. Culshaw and A. Kersey, “Fiber-optic sensing: a historical perspective,” Journal of Lightwave Technology, vol. 26, no. 9, pp. 1064–1078, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. R. G. Heideman, G. J. Veldhuis, E. W. H. Jager, and P. V. Lambeck, “Fabrication and packaging of integrated chemo-optical sensors,” Sensors and Actuators B, vol. 35, no. 1–3, pp. 234–240, 1996. View at Google Scholar · View at Scopus
  9. K. Tiefenthaler and W. Lukosz, “Integrated optical switches and gas sensors,” Optics Letters, vol. 9, no. 4, pp. 137–139, 1984. View at Google Scholar · View at Scopus
  10. K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Measurement Science and Technology, vol. 12, no. 7, pp. 757–764, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Ouerghi, W. Belhadj, F. Abdelmalek, M. Mejatty, and H. Bouchriha, “Polymer thin films and Bragg grating structures based temperature and pressure integrated effects,” Thin Solid Films, vol. 485, no. 1-2, pp. 176–181, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Wochnowski, M. Abu-El-Qomsan, W. Pieper et al., “UV-laser assisted fabrication of Bragg sensor components in a planar polymer chip,” Sensors and Actuators A, vol. 120, no. 1, pp. 44–52, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Wochnowski, M. T. Kouamo, W. Pieper et al., “Fabrication of a planar polymeric deformation Bragg sensor component by excimer laser radiation,” IEEE Sensors Journal, vol. 6, no. 2, pp. 331–338, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. K. J. Kim and M. C. Oh, “Flexible Bragg reflection waveguide devices fabricated by post-lift-off process,” IEEE Photonics Technology Letters, vol. 20, no. 1–4, pp. 288–290, 2008. View at Google Scholar
  15. T. Pustelny, I. Zielonka, C. Tyszkiewicz, P. Karasinski, and B. Pustelny, “Impressing technology of optical Bragg's gratings on planar optical sol-gel waveguides,” Opto-Electronics Review, vol. 14, no. 2, pp. 161–166, 2006. View at Google Scholar · View at Scopus
  16. V. M. N. Passaro, R. Loiacono et al., “Design of Bragg grating sensors based on submicrometer optical rib waveguides in SOI,” IEEE Sensors Journal, vol. 8, no. 9-10, pp. 1603–1611, 2008. View at Publisher · View at Google Scholar
  17. S.-L. Tsao and C.-P. Peng, “An SOI Michelson interferometer sensor with waveguide Bragg reflective gratings for temperature monitoring,” Microwave and Optical Technology Letters, vol. 30, no. 5, pp. 321–322, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Runde, S. Brunken, C. E. Ruter, and D. Kip, “Integrated optical electric field sensor based on a Bragg grating in lithium niobate,” Applied Physics B, vol. 86, no. 1, pp. 91–95, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. I. J. G. Sparrow, G. D. Emmerson, C. B. E. Gawith, and P. G. R. Smith, “Planar waveguide hygrometer and state sensor demonstrating supercooled water recognition,” Sensors and Actuators B, vol. 107, no. 2, pp. 856–860, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. I. J. G. Sparrow, G. D. Emmerson, C. B. E. Gawith, P. G. R. Smith, M. Kaczmarek, and A. Dyadyusha, “First order phase change detection using planar waveguide Bragg grating refractometer,” Applied Physics B, vol. 81, no. 1, pp. 1–4, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. X. Dai, S. J. Mihailov, C. L. Callender, C. Blanchetiere, and R. B. Walker, “Ridge-waveguide-based polarization insensitive Bragg grating refractometer,” Measurement Science & Technology, vol. 17, no. 7, pp. 1752–1756, 2006. View at Publisher · View at Google Scholar
  22. S.-M. Lee, K.-C. Ahn, and J. S. Sirkis, “Planar optical waveguide temperature sensor based on etched Bragg gratings considering nonlinear thermo-optic effect,” KSME International Journal, vol. 15, no. 3, pp. 309–319, 2001. View at Google Scholar · View at Scopus
  23. A. V. Dotsenko, A. L. Diikov, and T. A. Vartanyan, “Label-free biosensor using an optical waveguide with induced Bragg grating of variable strength,” Sensors and Actuators B, vol. 94, no. 1, pp. 116–121, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Nishiyama, Y. Hirata, I. Miyamoto, and J. Nishii, “Formation of periodic structures by the space-selective precipitation of Ge nanoparticles in channel waveguides,” Applied Surface Science, vol. 253, no. 15, pp. 6550–6554, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Svalgaard, K. Faerch, and L.-U. Andersen, “Variable optical attenuator fabricated by direct UV writing,” Journal of Lightwave Technology, vol. 21, no. 9, pp. 2097–2103, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Cheben, E. Post, S. Janz et al., “Tilted fiber Bragg grating sensor interrogation system using a high-resolution silicon-on-insulator arrayed waveguide grating,” Optics Letters, vol. 33, no. 22, pp. 2647–2649, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. A. J. Willshire, P. Niewczas, and J. R. Mcdonald, “A cyclic arrayed-waveguide-grating-based fiber-optic sensor interrogation system,” IEEE Photonics Technology Letters, vol. 18, no. 18, pp. 1904–1906, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Z. Xiao, P. Zhao, F. G. Sun, Z. G. Lu, Z. Zhang, and C. P. Grover, “Interrogating fiber Bragg grating sensors by thermally scanning a demultiplexer based on arrayed waveguide gratings,” Optics Letters, vol. 29, no. 19, pp. 2222–2224, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. G. D. Emmerson, S. P. Watts, C. B. E. Gawith et al., “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electronics Letters, vol. 38, no. 24, pp. 1531–1532, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. C. B. E. Gawith, G. D. Emmerson, S. G. McMeekin et al., “Small-spot interference pattern for single-step 2D integration and wide wavelength detuning of planar Bragg gratings,” Electronics Letters, vol. 39, no. 14, pp. 1050–1051, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE Journal of Quantum Electronics, vol. 35, no. 8, pp. 1105–1115, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. G. R. Quigley, R. D. Harris, and J. S. Wilkinson, “Sensitivity enhancement of integrated optical sensors by use of thin high-index films,” Applied Optics, vol. 38, no. 28, pp. 6036–6039, 1999. View at Google Scholar · View at Scopus