Table of Contents Author Guidelines Submit a Manuscript
Journal of Sensors
Volume 2009, Article ID 932471, 6 pages
http://dx.doi.org/10.1155/2009/932471
Research Article

Photonic Crystal Fiber Temperature Sensor Based on Quantum Dot Nanocoatings

Electrical and Electronic Engineering Department, Public University of Navarre, Campus Arrosadía s/n, 31006 Pamplona, Spain

Received 3 March 2009; Accepted 16 April 2009

Academic Editor: Valerio Pruneri

Copyright © 2009 Beatriz Larrión et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electronics Letters, vol. 31, no. 22, pp. 1941–1943, 1995. View at Publisher · View at Google Scholar
  2. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Optics Letters, vol. 21, no. 19, pp. 1547–1549, 1996. View at Google Scholar
  3. H. L. Ho, Y. L. Hoo, W. Jin et al., “Optimizing microstructured optical fibers for evanescent wave gas sensing,” Sensors and Actuators B, vol. 122, no. 1, pp. 289–294, 2007. View at Publisher · View at Google Scholar
  4. Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Applied Optics, vol. 42, no. 18, pp. 3509–3515, 2003. View at Google Scholar
  5. P. E. Hoiby, L. B. Nielsen, J. B. Jensen, T. P. Hansen, A. Bjarklev, and L. H. Pedersen, “Molecular immobilization and detection in a photonic crystal fiber,” vol. 5317 of Proceedings of SPIE, pp. 220–223, 2004. View at Publisher · View at Google Scholar
  6. W. Ye, L. L. Irene, C. R. Shuang, and P. Z. Jian, “Temperature sensor based on iodine-doped hollow core photonic crystal fiber,” in Proceedings of the International Conference on Microwave and Millimeter Wave Technology (ICMMT '08), vol. 2, pp. 890–892, 2008. View at Publisher · View at Google Scholar
  7. W. J. Bock, J. Chen, T. Eftimov, and W. Urbanczyk, “A photonic crystal fiber sensor for pressure measurements,” IEEE Transactions on Instrumentation and Measurement, vol. 55, no. 4, pp. 1119–1123, 2006. View at Publisher · View at Google Scholar
  8. V. P. Minkovich, D. Monzón-Hernández, J. Villatoro, and G. Badenes, “Microstructured optical fiber coated with thin films for gas and chemical sensing,” Optics Express, vol. 14, no. 18, pp. 8413–8418, 2006. View at Publisher · View at Google Scholar
  9. Y. Ruan, T. C. Foo, S. Warren-Smith et al., “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Optics Express, vol. 16, no. 22, pp. 18514–18523, 2008. View at Publisher · View at Google Scholar
  10. G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science, vol. 277, no. 5330, pp. 1232–1237, 1997. View at Publisher · View at Google Scholar
  11. M. T. Crisp and N. A. Kotov, “Preparation of nanoparticle coatings on surfaces of complex geometry,” Nano Letters, vol. 3, no. 2, pp. 173–177, 2003. View at Publisher · View at Google Scholar
  12. F. J. Arregui, I. R. Matías, and R. O. Claus, “Optical fiber sensors based on nanostructured coatings fabricated by means of the layer-by-layer electrostatic self-assembly method,” vol. 6619 of Proceedings of SPIE, 2007. View at Publisher · View at Google Scholar
  13. J. Goicoechea, F. J. Arregui, J. M. Corres, and I. R. Matias, “Study and optimization of self-assembled polymeric multilayer structures with neutral red for pH sensing applications,” Journal of Sensors, vol. 2008, Article ID 142854, 7 pages, 2008. View at Google Scholar
  14. R. K. Iler, “Multilayers of colloidal particles,” Journal of Colloid and Interface Science, vol. 21, no. 6, pp. 569–594, 1966. View at Google Scholar
  15. A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science, vol. 271, no. 5251, pp. 933–937, 1996. View at Google Scholar
  16. J. M. Costa-Fernandez, “Optical sensors based on luminescent quantum dots,” Analytical and Bioanalytical Chemistry, vol. 384, no. 1, pp. 37–40, 2006. View at Publisher · View at Google Scholar
  17. D. C. Oertel, M. G. Bawendi, A. C. Arango, and V. Bulović, “Photodetectors based on treated CdSe quantum-dot films,” Applied Physics Letters, vol. 87, no. 21, pp. 1–3, 2005. View at Publisher · View at Google Scholar
  18. T. J. Bukowski and J. H. Simmons, “Quantum dot research: current state and future prospects,” Critical Reviews in Solid State and Materials Sciences, vol. 27, no. 3-4, pp. 119–142, 2002. View at Google Scholar
  19. I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nature Materials, vol. 4, no. 6, pp. 435–446, 2005. View at Publisher · View at Google Scholar
  20. A. R. Clapp, E. R. Goldman, H. Tetsuo Uyeda, E. L. Chang, J. L. Whitley, and I. L. Medintz, “Monitoring of enzymatic proteolysis using self-assembled quantum dot-protein substrate sensors,” Journal of Sensors, vol. 2008, Article ID 797436, 10 pages, 2008. View at Google Scholar
  21. M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science, vol. 281, no. 5385, pp. 2013–2016, 1998. View at Publisher · View at Google Scholar
  22. V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature, vol. 370, no. 6488, pp. 354–357, 1994. View at Publisher · View at Google Scholar
  23. P. Jorge, M. A. Martins, T. Trindade, J. L. Santos, and F. Farahi, “Optical fiber sensing using quantum dots,” Sensors, vol. 7, no. 12, pp. 3489–3534, 2007. View at Google Scholar
  24. K. E. Sapsford, T. Pons, I. L. Medintz, and H. Mattoussi, “Biosensing with luminescent semiconductor quantum dots,” Sensors, vol. 6, no. 8, pp. 925–953, 2006. View at Google Scholar
  25. G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot optical temperature probes,” Applied Physics Letters, vol. 83, no. 17, pp. 3555–3557, 2003. View at Publisher · View at Google Scholar
  26. J. Bravo, J. Goicoechea, J. M. Corres, F. J. Arregui, and I. R. Matias, “Encapsulated quantum dot nanofilms inside hollow core optical fibers for temperature measurement,” IEEE Sensors Journal, vol. 8, no. 7, pp. 1368–1374, 2008. View at Publisher · View at Google Scholar
  27. G. De Bastida, F. J. Arregui, J. Goicoechea, and I. R. Matias, “Quantum dots-based optical fiber temperature sensors fabricated by layer-by-layer,” IEEE Sensors Journal, vol. 6, no. 6, pp. 1378–1379, 2006. View at Publisher · View at Google Scholar
  28. P. A. S. Jorge, M. Mayeh, R. Benrashid, P. Caldas, J. L. Santos, and F. Farahi, “Quantum dots as self-referenced optical fibre temperature probes for luminescent chemical sensors,” Measurement Science and Technology, vol. 17, no. 5, pp. 1032–1038, 2006. View at Publisher · View at Google Scholar
  29. F. J. Arregui, I. R. Matias, J. Goicoechea, and I. del Villar, Sensors Based on Nanostructured Materials, Springer, New York, NY, USA.
  30. M. L. Redígolo, W. A. Arellano, L. C. Barbosa, C. H. Brito Cruz, C. L. Cesar, and A. M. De Paula, “Temperature dependence of the absorption spectra in CdTe-doped glasses,” Semiconductor Science and Technology, vol. 14, no. 1, pp. 58–63, 1999. View at Google Scholar
  31. C. Sifuentes, Y. O. Barmenkov, A. N. Starodumov, V. N. Filippov, and A. A. Lipovskii, “Application of CdSe-nanocrystallite-doped glass for temperature measurements in fiber sensors,” Optical Engineering, vol. 39, no. 8, pp. 2182–2186, 2000. View at Publisher · View at Google Scholar