Table of Contents Author Guidelines Submit a Manuscript
Journal of Skin Cancer
Volume 2013, Article ID 537028, 9 pages
http://dx.doi.org/10.1155/2013/537028
Review Article

AP1 Transcription Factors in Epidermal Differentiation and Skin Cancer

1Department of Biochemistry and Molecular Biology, University of Maryland, School of Medicine, 108 North Greene Street, Rm 103, Baltimore, MD 21201, USA
2Department of Dermatology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
3Department of Obstetrics and Genecology and Reproductive Sciences, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
4Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
5Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA

Received 21 February 2013; Accepted 2 May 2013

Academic Editor: Deric L. Wheeler

Copyright © 2013 Richard L. Eckert et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. L. Eckert, G. Adhikary, S. Balasubramanian et al., “Biochemistry of epidermal stem cells,” Biochimica et Biophysica Acta, vol. 1830, no. 2, pp. 2427–2434, 2013. View at Publisher · View at Google Scholar
  2. C. Blanpain, V. Horsley, and E. Fuchs, “Epithelial stem cells: turning over new leaves,” Cell, vol. 128, no. 3, pp. 445–458, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Cotsarelis, “Epithelial stem cells: a folliculocentric view,” Journal of Investigative Dermatology, vol. 126, no. 7, pp. 1459–1468, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. A. E. Kalinin, A. V. Kajava, and P. M. Steinert, “Epithelial barrier function: assembly and structural features of the cornified cell envelope,” BioEssays, vol. 24, no. 9, pp. 789–800, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. P. M. Steinert, “A model for the hierarchical structure of the human epidermal cornified cell envelope,” Cell Death and Differentiation, vol. 2, no. 1, pp. 33–40, 1995. View at Google Scholar · View at Scopus
  6. R. L. Eckert, J. F. Crish, and N. A. Robinson, “The epidermal keratinocyte as a model for the study of gene regulation and cell differentiation,” Physiological Reviews, vol. 77, no. 2, pp. 397–424, 1997. View at Google Scholar · View at Scopus
  7. R. L. Eckert, J. F. Crish, E. B. Banks, and J. F. Welter, “The epidermis: genes on—genes off,” Journal of Investigative Dermatology, vol. 109, no. 4, pp. 501–509, 1997. View at Google Scholar · View at Scopus
  8. J. F. Welter and R. L. Eckert, “Differential expression of the fos and jun family members c-fos, fosB, Fra-1, Fra-2, c-jun, junB and junD during human epidermal keratinocyte differentiation,” Oncogene, vol. 11, no. 12, pp. 2680–2687, 1995. View at Google Scholar · View at Scopus
  9. R. L. Eckert, T. Efimova, S. R. Dashti et al., “Keratinocyte survival, differentiation, and death: many roads lead to mitogen-activated protein kinase,” Journal of Investigative Dermatology Symposium Proceedings, vol. 7, no. 1, pp. 36–40, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. R. L. Eckert, T. Efimova, S. Balasubramanian, J. F. Crish, F. Bone, and S. Dashti, “p38 mitogen-activated protein kinases on the body surface—a function for p38δ,” Journal of Investigative Dermatology, vol. 120, no. 5, pp. 823–828, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. R. L. Eckert, J. F. Crish, T. Efimova et al., “Regulation of involucrin gene expression,” Journal of Investigative Dermatology, vol. 123, no. 1, pp. 13–22, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Efimova and R. L. Eckert, “Regulation of human involucrin promoter activity by novel protein kinase C isoforms,” Journal of Biological Chemistry, vol. 275, no. 3, pp. 1601–1607, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Efimova, P. LaCelle, J. F. Welter, and R. L. Eckert, “Regulation of human involucrin promoter activity by a protein kinase C, Ras, MEKK1, MEK3, p38/RK, AP1 signal transduction pathway,” Journal of Biological Chemistry, vol. 273, no. 38, pp. 24387–24395, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Efimova, A. Deucher, T. Kuroki, M. Ohba, and R. L. Eckert, “Novel protein kinase C isoforms regulate human keratinocyte differentiation by activating a p38δ mitogen-activated protein kinase cascade that targets CCAAT/enhancer-binding protein α,” Journal of Biological Chemistry, vol. 277, no. 35, pp. 31753–31760, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. R. J. Davis, “Transcriptional regulation by MAP kinases,” Molecular Reproduction and Development, vol. 42, no. 4, pp. 459–467, 1995. View at Publisher · View at Google Scholar · View at Scopus
  16. C. J. Caunt and S. M. Keyse, “Dual-specificity MAP kinase phosphatases (MKPs): shaping the outcome of MAP kinase signalling,” FEBS Journal, vol. 280, no. 2, pp. 489–504, 2013. View at Publisher · View at Google Scholar
  17. C. Q. Pan, M. Sudol, M. Sheetz, and B. C. Low, “Modularity and functional plasticity of scaffold proteins as p(l)acemakers in cell signaling,” Cellular Signalling, vol. 24, no. 11, pp. 2143–2165, 2012. View at Publisher · View at Google Scholar
  18. F. Zassadowski, C. Rochette-Egly, C. Chomienne, and B. Cassinat, “Regulation of the transcriptional activity of nuclear receptors by the MEK/ERK1/2 pathway,” Cellular Signalling, vol. 24, no. 12, pp. 2369–2377, 2012. View at Publisher · View at Google Scholar
  19. M. J. Robinson and M. H. Cobb, “Mitogen-activated protein kinase pathways,” Current Opinion in Cell Biology, vol. 9, no. 2, pp. 180–186, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. Chen, T. B. Gibson, F. Robinson et al., “MAP kinases,” Chemical Reviews, vol. 101, no. 8, pp. 2449–2476, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. S. R. Kanade and R. L. Eckert, “Protein arginine methyltransferase 5 (PRMT5) signaling suppresses protein kinase Cdelta- and p38delta-dependent signaling and keratinocyte differentiation,” Journal of Biological Chemistry, vol. 287, no. 10, pp. 7313–7323, 2012. View at Publisher · View at Google Scholar
  22. T. Efimova, A. M. Broome, and R. L. Eckert, “A regulatory role for p38δ MAPK in keratinocyte differentiation: evidence for p38δ-ERK1/2 complex formation,” Journal of Biological Chemistry, vol. 278, no. 36, pp. 34277–34285, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Efimova, A. M. Broome, and R. L. Eckert, “Protein kinase Cδ regulates keratinocyte death and survival by regulating activity and subcellular localization of a p38δ-extracellular signal-regulated kinase 1/2 complex,” Molecular and Cellular Biology, vol. 24, no. 18, pp. 8167–8183, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. C. A. Kraft, T. Efimova, and R. L. Eckert, “Activation of PKCδ and p38δ MAPK during okadaic acid dependent keratinocyte apoptosis,” Archives of Dermatological Research, vol. 299, no. 2, pp. 71–83, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Angel, A. Szabowski, and M. Schorpp-Kistner, “Function and regulation of AP-1 subunits in skin physiology and pathology,” Oncogene, vol. 20, no. 19, pp. 2413–2423, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Karin, Z. G. Liu, and E. Zandi, “AP-1 function and regulation,” Current Opinion in Cell Biology, vol. 9, no. 2, pp. 240–246, 1997. View at Publisher · View at Google Scholar · View at Scopus
  27. E. Shaulian and M. Karin, “AP-1 as a regulator of cell life and death,” Nature Cell Biology, vol. 4, no. 5, pp. E131–E136, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Shaulian and M. Karin, “AP-1 in cell proliferation and survival,” Oncogene, vol. 20, no. 19, pp. 2390–2400, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Mizuno, Y. Y. Cho, W. Y. Ma, A. M. Bode, and Z. Dong, “Effects of MAP kinase inhibitors on epidermal growth factor-induced neoplastic transformation of human keratinocytes,” Molecular Carcinogenesis, vol. 45, no. 1, pp. 1–9, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Shi and R. R. Isseroff, “Epidermal growth factor (EGF)-mediated DNA-binding activity of AP-1 is attenuated in senescent human epidermal keratinocytes,” Experimental Dermatology, vol. 14, no. 7, pp. 519–527, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Takahashi, M. Ibe, S. Nakamura, A. Ishida-Yamamoto, Y. Hashimoto, and H. Iizuka, “Extracellular regulated kinase and c-Jun N-terminal kinase are activated in psoriatic involved epidermis,” Journal of Dermatological Science, vol. 30, no. 2, pp. 94–99, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Adhikary, J. Crish, J. Lass, and R. L. Eckert, “Regulation of involucrin expression in normal human corneal epithelial cells: a role for activator protein one,” Investigative Ophthalmology and Visual Science, vol. 45, no. 4, pp. 1080–1087, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Raj, D. E. Brash, and D. Grossman, “Keratinocyte apoptosis in epidermal development and disease,” Journal of Investigative Dermatology, vol. 126, no. 2, pp. 243–257, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. E. Saez, S. E. Rutberg, E. Mueller et al., “c-fos is required for malignant progression of skin tumors,” Cell, vol. 82, no. 5, pp. 721–732, 1995. View at Google Scholar · View at Scopus
  35. C. R. Kahn, E. Young, Ihn Hwan Lee, and J. S. Rhim, “Human corneal epithelial primary cultures and cell lines with extended life span: in vitro model for ocular studies,” Investigative Ophthalmology and Visual Science, vol. 34, no. 12, pp. 3429–3441, 1993. View at Google Scholar · View at Scopus
  36. Q. B. She, N. Chen, A. M. Bode, R. A. Flavell, and Z. Dong, “Deficiency of c-Jun-NH2-terminal kinase-1 in mice enhances skin tumor development by 12-O-tetradecanoylphorbol-13-acetate,” Cancer Research, vol. 62, no. 5, pp. 1343–1348, 2002. View at Google Scholar · View at Scopus
  37. S. E. Rutberg, T. L. Adams, A. Glick, M. T. Bonovich, C. Vinson, and S. H. Yuspa, “Activator protein 1 transcription factors are fundamental to v-ras(Ha)-induced changes in gene expression in neoplastic keratinocytes,” Cancer Research, vol. 60, no. 22, pp. 6332–6338, 2000. View at Google Scholar · View at Scopus
  38. H. Iizuka, H. Takahashi, M. Honma, and A. Ishida-Yamamoto, “Unique keratinization process in psoriasis: late differentiation markers are abolished because of the premature cell death,” Journal of Dermatology, vol. 31, no. 4, pp. 271–276, 2004. View at Google Scholar · View at Scopus
  39. J. F. Welter, J. F. Crish, C. Agarwal, and R. L. Eckert, “Fos-related antigen (Fra-1), junB, and junD activate human involucrin promoter transcription by binding to proximal and distal AP1 sites to mediate phorbol ester effects on promoter activity,” Journal of Biological Chemistry, vol. 270, no. 21, pp. 12614–12622, 1995. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Wu, X. Zhang, and Z. E. Zehner, “c-Jun and the dominant-negative mutant, TAM67, induce vimentin gene expression by interacting with the activator Sp1,” Oncogene, vol. 22, no. 55, pp. 8891–8901, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. E. B. Banks, J. F. Crish, and R. L. Eckert, “Transcription factor Sp1 activates involucrin promoter activity in non-epithelial cell types,” Biochemical Journal, vol. 337, part 3, pp. 507–512, 1999. View at Publisher · View at Google Scholar · View at Scopus
  42. E. B. Banks, J. F. Crish, J. F. Welter, and R. L. Eckert, “Characterization of human involucrin promoter distal regulatory region transcriptional activator elements—a role for Sp1 and AP1 binding sites,” Biochemical Journal, vol. 331, part 1, pp. 61–68, 1998. View at Google Scholar · View at Scopus
  43. C. Agarwal, T. Efimova, J. F. Welter, J. F. Crish, and R. L. Eckert, “CCAAT/enhancer-binding proteins. A role in regulation of human involucrin promoter response to phorbol ester,” Journal of Biological Chemistry, vol. 274, no. 10, pp. 6190–6194, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Schutte, J. D. Minna, and M. J. Birrer, “Deregulated expression of human c-jun transforms primary rat embryo cells in cooperation with an activated c-Ha-ras gene and transforms Rat-1a cells as a single gene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 7, pp. 2257–2261, 1989. View at Google Scholar · View at Scopus
  45. L. Bakiri, D. Lallemand, E. Bossy-Wetzel, and M. Yaniv, “Cell cycle-dependent variations in c-Jun and JunB phosphorylation: a role in the control of cyclin D1 expression,” EMBO Journal, vol. 19, no. 9, pp. 2056–2068, 2000. View at Google Scholar · View at Scopus
  46. E. Passegué and E. F. Wagner, “JunB suppresses cell proliferation by transcriptional activation of p16(INK4a) expression,” EMBO Journal, vol. 19, no. 12, pp. 2969–2979, 2000. View at Google Scholar · View at Scopus
  47. T. Deng and M. Karin, “JunB differs from c-Jun in its DNA-binding and dimerization domains, and respresses c-Jun by formation of inactive heterodimers,” Genes and Development, vol. 7, no. 3, pp. 479–490, 1993. View at Google Scholar · View at Scopus
  48. D. Mehic, L. Bakiri, M. Ghannadan, E. F. Wagner, and E. Tschachler, “Fos and Jun proteins are specifically expressed during differentiation of human keratinocytes,” Journal of Investigative Dermatology, vol. 124, no. 1, pp. 212–220, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Karin, “The regulation of AP-1 activity by mitogen-activated protein kinases,” Journal of Biological Chemistry, vol. 270, no. 28, pp. 16483–16486, 1995. View at Google Scholar · View at Scopus
  50. M. Karin, “Mitogen-activated protein kinase cascades as regulators of stress responses,” Annals of the New York Academy of Sciences, vol. 851, pp. 139–146, 1998. View at Publisher · View at Google Scholar · View at Scopus
  51. L. Florin, J. Knebel, P. Zigrino et al., “Delayed wound healing and epidermal hyperproliferation in mice lacking JunB in the skin,” Journal of Investigative Dermatology, vol. 126, no. 4, pp. 902–911, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Zenz, R. Eferl, L. Kenner et al., “Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins,” Nature, vol. 437, no. 7057, pp. 369–375, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. E. Passegué, W. Jochum, A. Behrens, R. Ricci, and E. F. Wagne, “JunB can substitute for Jun in mouse development and cell proliferation,” Nature Genetics, vol. 30, no. 2, pp. 158–166, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Schreiber, Z. Q. Wang, W. Jochum, I. Fetka, C. Elliott, and E. F. Wagner, “Placental vascularisation requires the AP-1 component Fra1,” Development, vol. 127, no. 22, pp. 4937–4948, 2000. View at Google Scholar · View at Scopus
  55. A. Fleischmann, F. Hafezi, C. Elliott, C. E. Remé, U. Rüther, and E. F. Wagner, “Fra-1 replaces c-Fos-dependent functions in mice,” Genes and Development, vol. 14, no. 21, pp. 2695–2700, 2000. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Schorpp-Kistner, Z. Q. Wang, P. Angel, and E. F. Wagner, “JunB is essential for mammalian placentation,” EMBO Journal, vol. 18, no. 4, pp. 934–948, 1999. View at Publisher · View at Google Scholar · View at Scopus
  57. M. C. Gruda, J. van Amsterdam, C. A. Rizzo, S. K. Durham, S. Lira, and R. Bravo, “Expression of FosB during mouse development: normal development of FosB knockout mice,” Oncogene, vol. 12, no. 10, pp. 2177–2185, 1996. View at Google Scholar · View at Scopus
  58. Z. Q. Wang, C. Ovitt, A. E. Grigoriadis, U. Mohle-Steinlein, U. Ruther, and E. F. Wagner, “Bone and haematopoietic defects in mice lacking c-fos,” Nature, vol. 360, no. 6406, pp. 741–745, 1992. View at Publisher · View at Google Scholar · View at Scopus
  59. R. S. Johnson, B. M. Spiegelman, and V. Papaioannou, “Pleiotropic effects of a null mutation in the c-fos proto-oncogene,” Cell, vol. 71, no. 4, pp. 577–586, 1992. View at Publisher · View at Google Scholar · View at Scopus
  60. J. R. Brown, H. Ye, R. T. Bronson, P. Dikkes, and M. E. Greenberg, “A defect in nurturing in mice lacking the immediate early gene fosB,” Cell, vol. 86, no. 2, pp. 297–309, 1996. View at Publisher · View at Google Scholar · View at Scopus
  61. R. S. Johnson, B. van Lingen, V. E. Papaioannou, and B. M. Spiegelman, “A null mutation at the c-jun locus causes embryonic lethality and retarded cell growth in culture,” Genes and Development, vol. 7, no. 7B, pp. 1309–1317, 1993. View at Google Scholar · View at Scopus
  62. F. Hilberg, A. Aguzzi, N. Howells, and E. F. Wagner, “c-Jun is essential for normal mouse development and hepatogenesis,” Nature, vol. 365, no. 6442, pp. 179–181, 1993. View at Publisher · View at Google Scholar · View at Scopus
  63. R. Eferl, M. Sibilia, F. Hilberg et al., “Functions of c-Jun in liver and heart development,” Journal of Cell Biology, vol. 145, no. 5, pp. 1049–1061, 1999. View at Publisher · View at Google Scholar · View at Scopus
  64. D. Thépot, J. B. Weitzman, J. Barra et al., “Targeted disruption of the murine junD gene results in multiple defects in male reproductive function,” Development, vol. 127, no. 1, pp. 143–153, 2000. View at Google Scholar · View at Scopus
  65. Z. Dong, H. C. Crawford, V. Lavrovsky et al., “A dominant negative mutant of jun blocking 12-O-tetradecanoylphorbol-13-acetate-induced invasion in mouse keratinocytes,” Molecular Carcinogenesis, vol. 19, no. 3, pp. 204–212, 1997. View at Google Scholar
  66. E. A. Rorke, G. Adhikary, R. Jans, J. F. Crish, and R. L. Eckert, “AP1 factor inactivation in the suprabasal epidermis causes increased epidermal hyperproliferation and hyperkeratosis but reduced carcinogen-dependent tumor formation,” Oncogene, vol. 29, no. 44, pp. 5873–5882, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. Q. Shen, Y. Zhang, I. P. Uray et al., “The AP-1 transcription factor regulates postnatal mammary gland development,” Developmental Biology, vol. 295, no. 2, pp. 589–603, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. E. J. Thompson, J. MacGowan, M. R. Young, N. Colburn, and G. T. Bowden, “A dominant negative c-jun specifically blocks okadaic acid-induced skin tumor promotion,” Cancer Research, vol. 62, no. 11, pp. 3044–3047, 2002. View at Google Scholar · View at Scopus
  69. J. W. Tichelaar, Y. Yan, Q. Tan et al., “A dominant-negative c-jun mutant inhibits lung carcinogenesis in mice,” Cancer Prevention Research, vol. 3, no. 9, pp. 1148–1156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. M. R. Young, L. Farrell, P. Lambert, P. Awasthi, and N. H. Colburn, “Protection against human papillomavirus type 16-E7 oncogene-induced tumorigenesis by in vivo expression of dominant-negative c-jun,” Molecular Carcinogenesis, vol. 34, no. 2, pp. 72–77, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. M. R. Young, J. J. Li, M. Rincón et al., “Transgenic mice demonstrate AP-1 (activator protein-1) transactivation is required for tumor promotion,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 17, pp. 9827–9832, 1999. View at Publisher · View at Google Scholar · View at Scopus
  72. R. Zenz, R. Eferl, C. Scheinecker et al., “Activator protein 1 (Fos/Jun) functions in inflammatory bone and skin disease,” Arthritis Research and Therapy, vol. 10, no. 1, article 201, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. M. L. Carrozza, H. Jacobs, D. Acton, I. Verma, and A. Berns, “Overexpression of the FosB2 gene in thymocytes causes aberrant development of T cells and thymic epithelial cells,” Oncogene, vol. 14, no. 9, pp. 1083–1091, 1997. View at Google Scholar · View at Scopus
  74. A. E. Grigoriadis, K. Schellander, Z. Q. Wang, and E. F. Wagner, “Osteoblasts are target cells for transformation in c-fos transgenic mice,” Journal of Cell Biology, vol. 122, no. 3, pp. 685–701, 1993. View at Google Scholar · View at Scopus
  75. G. Sabatakos, N. A. Sims, J. Chen et al., “Overexpression of ΔFosB transcription factor(s) increases bone formation and inhibits adipogenesis,” Nature Medicine, vol. 6, no. 9, pp. 985–990, 2000. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Schorpp, R. Jäger, K. Schellander et al., “The human ubiquitin C promoter directs high ubiquitous expression of transgenes in mice,” Nucleic Acids Research, vol. 24, no. 9, pp. 1787–1788, 1996. View at Publisher · View at Google Scholar · View at Scopus
  77. R. Zenz and E. F. Wagner, “Jun signalling in the epidermis: from developmental defects to psoriasis and skin tumors,” International Journal of Biochemistry and Cell Biology, vol. 38, no. 7, pp. 1043–1049, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. R. Eferl and E. F. Wagner, “AP-1: a double-edged sword in tumorigenesis,” Nature Reviews Cancer, vol. 3, no. 11, pp. 859–868, 2003. View at Google Scholar · View at Scopus
  79. E. Passegué, W. Jochum, M. Schorpp-Kistner, U. Möhle-Steinlein, and E. F. Wagner, “Chronic myeloid leukemia with increased granulocyte progenitors in mice lacking JunB expression in the myeloid lineage,” Cell, vol. 104, no. 1, pp. 21–32, 2001. View at Publisher · View at Google Scholar · View at Scopus
  80. J. B. Weitzman, L. Fiette, K. Matsuo, and M. Yaniv, “JunD protects cells from p53-dependent senescence and apoptosis,” Molecular Cell, vol. 6, no. 5, pp. 1109–1119, 2000. View at Google Scholar · View at Scopus
  81. O. Yazgan and C. M. Pfarr, “Differential binding of the menin tumor suppressor protein to JunD isoforms,” Cancer Research, vol. 61, no. 3, pp. 916–920, 2001. View at Google Scholar · View at Scopus
  82. C. M. Pfarr, F. Mechta, G. Spyrou, D. Lallemand, S. Carillo, and M. Yaniv, “Mouse JunD negatively regulates fibroblast growth and antagonizes transformation by ras,” Cell, vol. 76, no. 4, pp. 747–760, 1994. View at Publisher · View at Google Scholar · View at Scopus
  83. D. Lu, S. Chen, X. Tan et al., “Fra-1 promotes breast cancer chemosensitivity by driving cancer stem cells from dormancy,” Cancer Research, vol. 72, no. 14, pp. 3451–3456, 2012. View at Google Scholar
  84. M. Vaz, N. Machireddy, A. Irving et al., “Oxidant-induced cell death and Nrf2-dependent antioxidative response are controlled by Fra-1/AP-1,” Molecular and Cellular Biology, vol. 32, no. 9, pp. 1694–1709, 2012. View at Google Scholar
  85. S. Yang, Y. Li, J. Gao et al., “MicroRNA-34 suppresses breast cancer invasion and metastasis by directly targeting Fra-1,” Oncogene, 2012. View at Publisher · View at Google Scholar
  86. R. Zenz, H. Scheuch, P. Martin et al., “c-Jun regulates eyelid closure and skin tumor development through EGFR signaling,” Developmental Cell, vol. 4, no. 6, pp. 879–889, 2003. View at Publisher · View at Google Scholar · View at Scopus
  87. N. C. Luetteke, T. H. Qiu, R. L. Peiffer, P. Oliver, O. Smithies, and D. C. Lee, “TGFα deficiency results in hair follicle and eye abnormalities in targeted and waved-1 mice,” Cell, vol. 73, no. 2, pp. 263–278, 1993. View at Publisher · View at Google Scholar · View at Scopus
  88. K. J. Fowler, F. Walker, W. Alexander et al., “A mutation in the epidermal growth factor receptor in waved-2 mice has a profound effect on receptor biochemistry that results in impaired lactation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 5, pp. 1465–1469, 1995. View at Publisher · View at Google Scholar · View at Scopus
  89. P. J. Miettinen, J. E. Berger, J. Meneses et al., “Epithelial immaturity and multiorgan failure in mice lacking epidermal growth factor receptor,” Nature, vol. 376, no. 6538, pp. 337–341, 1995. View at Google Scholar · View at Scopus
  90. D. W. Threadgill, A. A. Dlugosz, L. A. Hansen et al., “Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype,” Science, vol. 269, no. 5221, pp. 230–234, 1995. View at Google Scholar · View at Scopus
  91. J. Y. Jin, H. Ke, R. P. Hall, and J. Y. Zhang, “C-Jun promotes whereas JunB inhibits epidermal neoplasia,” Journal of Investigative Dermatology, vol. 131, no. 5, pp. 1149–1158, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. P. Pflegerl, P. Vesely, B. Hantusch et al., “Epidermal loss of JunB leads to a SLE phenotype due to hyper IL-6 signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 48, pp. 20423–20428, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. A. Meixner, R. Zenz, H. B. Schonthaler et al., “Epidermal JunB represses G-CSF transcription and affects haematopoiesis and bone formation,” Nature Cell Biology, vol. 10, no. 8, pp. 1003–1011, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. H. B. Schonthaler, R. Huggenberger, S. K. Wculek, M. Detmar, and E. F. Wagner, “Systemic anti-VEGF treatment strongly reduces skin inflammation in a mouse model of psoriasis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 50, pp. 21264–21269, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. J. Guinea-Viniegra, R. Zenz, H. Scheuch et al., “TNFα shedding and epidermal inflammation are controlled by Jun proteins,” Genes and Development, vol. 23, no. 22, pp. 2663–2674, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. J. Guinea-Viniegra, R. Zenz, H. Scheuch et al., “Differentiation-induced skin cancer suppression by FOS, p53, and TACE/ADAM17,” The Journal of Clinical Investigation, vol. 122, no. 8, pp. 2898–2910, 2012. View at Publisher · View at Google Scholar
  97. D. M. Benbrook and N. C. Jones, “Heterodimer formation between CREB and JUN proteins,” Oncogene, vol. 5, no. 3, pp. 295–302, 1990. View at Google Scholar · View at Scopus
  98. H. van Dam and M. Castellazzi, “Distinct roles of Jun:Fos and Jun:ATF dimers in oncogenesis,” Oncogene, vol. 20, no. 19, pp. 2453–2464, 2001. View at Publisher · View at Google Scholar · View at Scopus
  99. A. Bhoumik, B. Fichtman, C. DeRossi et al., “Suppressor role of activating transcription factor 2 (ATF2) in skin cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 5, pp. 1674–1679, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. P. H. Brown, T. K. Chen, and M. J. Birrer, “Mechanism of action of a dominant-negative mutant of c-Jun,” Oncogene, vol. 9, no. 3, pp. 791–799, 1994. View at Google Scholar · View at Scopus
  101. B. Han, E. A. Rorke, G. Adhikary et al., “Suppression of AP1 transcription factor function in keratinocyte suppresses differentiation,” PLoS One, vol. 7, no. 5, Article ID e36941, 2012. View at Google Scholar
  102. J. J. Li, J. S. Rhim, R. Schlegel, K. H. Vousden, and N. H. Colburn, “Expression of dominant negative Jun inhibits elevated AP-1 and NF-κB transactivation and suppresses anchorage independent growth of HPV immortalized human keratinocytes,” Oncogene, vol. 16, no. 21, pp. 2711–2721, 1998. View at Google Scholar · View at Scopus
  103. J. J. Li, Y. Cao, M. R. Young, and N. H. Colburn, “Induced expression of dominant-negative c-jun downregulates NFkappaB and AP-1 target genes and suppresses tumor phenotype in human keratinocytes,” Molecular Carcinogenesis, vol. 29, no. 3, pp. 159–169, 2000. View at Google Scholar
  104. J. F. Crish, J. M. Howard, T. M. Zaim, S. Murthy, and R. L. Eckert, “Tissue-specific and differentiation-appropriate expression of the human involucrin gene in transgenic mice: an abnormal epidermal phenotype,” Differentiation, vol. 53, no. 3, pp. 191–200, 1993. View at Google Scholar · View at Scopus
  105. J. F. Crish, T. M. Zaim, and R. L. Eckert, “The distal regulatory region of the human involucrin promoter is required for expression in epidermis,” Journal of Biological Chemistry, vol. 273, no. 46, pp. 30460–30465, 1998. View at Publisher · View at Google Scholar · View at Scopus
  106. J. F. Crish, F. Bone, S. Balasubramanian et al., “Suprabasal expression of the human papillomavirus type 16 oncoproteins in mouse epidermis alters expression of cell cycle regulatory proteins,” Carcinogenesis, vol. 21, no. 5, pp. 1031–1037, 2000. View at Google Scholar · View at Scopus
  107. S. J. Cooper, J. MacGowan, J. Ranger-Moore, M. R. Young, N. H. Colburn, and G. T. Bowden, “Expression of dominant negative c-jun inhibits ultraviolet B-induced squamous cell carcinoma number and size in an SKH-1 hairless mouse model,” Molecular Cancer Research, vol. 1, no. 11, pp. 848–854, 2003. View at Google Scholar · View at Scopus
  108. C. P. Matthews, A. M. Birkholz, A. R. Baker et al., “Dominant-negative activator protein 1 (TAM67) targets cyclooxygenase-2 and osteopontin under conditions in which it specifically inhibits tumorigenesis,” Cancer Research, vol. 67, no. 6, pp. 2430–2438, 2007. View at Publisher · View at Google Scholar · View at Scopus
  109. A. Dhar, J. Hu, R. Reeves, L. M. S. Resar, and N. H. Colburn, “Dominant-negative c-Jun (TAM67) target genes: HMGA1 is required for tumor promoter-induced transformation,” Oncogene, vol. 23, no. 25, pp. 4466–4476, 2004. View at Publisher · View at Google Scholar · View at Scopus
  110. Q. Wei, H. Jiang, C. P. Matthews, and N. H. Colburn, “Sulfiredoxin is an AP-1 target gene that is required for transformation and shows elevated expression in human skin malignancies,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 50, pp. 19738–19743, 2008. View at Publisher · View at Google Scholar · View at Scopus
  111. M. R. Young, H. S. Yang, and N. H. Colburn, “Promising molecular targets for cancer prevention: AP-1, NF-κB and Pdcd4,” Trends in Molecular Medicine, vol. 9, no. 1, pp. 36–41, 2003. View at Publisher · View at Google Scholar · View at Scopus
  112. M. I. Kang, A. R. Baker, C. R. Dextras, S. M. Cabarcas, M. R. Young, and N. H. Colburn, “Targeting of noncanonical Wnt5a signaling by AP-1 blocker dominant-negative Jun when it inhibits skin carcinogenesis,” Genes & Cancer, vol. 3, no. 1, pp. 37–50, 2012. View at Publisher · View at Google Scholar
  113. T. J. Slaga, J. DiGiovanni, L. D. Winberg, and I. V. Budunova, “Skin carcinogenesis: characteristics, mechanisms, and prevention,” Progress in Clinical and Biological Research, vol. 391, pp. 1–20, 1995. View at Google Scholar · View at Scopus