Table of Contents
Journal of Signal Transduction
Volume 2012, Article ID 208650, 18 pages
http://dx.doi.org/10.1155/2012/208650
Review Article

Nuclear Transport: A Switch for the Oxidative Stress—Signaling Circuit?

Department of Physiology, McGill University, Montreal, QC, Canada H3G 1Y6

Received 24 May 2011; Accepted 5 July 2011

Academic Editor: Paola Chiarugi

Copyright © 2012 Mohamed Kodiha and Ursula Stochaj. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. P. Jones, “Radical-free biology of oxidative stress,” The American Journal of Physiology—Cell Physiology, vol. 295, no. 4, pp. C849–C868, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Halliwell, “Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment,” Drugs & Aging, vol. 18, no. 9, pp. 685–716, 2001. View at Google Scholar · View at Scopus
  3. D.-F. Dai and P. S. Rabinovitch, “Cardiac aging in mice and humans: the role of mitochondrial oxidative stress,” Trends in Cardiovascular Medicine, vol. 19, no. 7, pp. 213–220, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Li and N. J. Holbrook, “Common mechanisms for declines in oxidative stress tolerance and proliferation with aging,” Free Radical Biology and Medicine, vol. 35, no. 3, pp. 292–299, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Finkel and N. J. Holbrook, “Oxidants, oxidative stress and the biology of ageing,” Nature, vol. 408, no. 6809, pp. 239–247, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. N. J. Holbrook and S. Ikeyama, “Age-related decline in cellular response to oxidative stress: links to growth factor signaling pathways with common defects,” Biochemical Pharmacology, vol. 64, no. 5-6, pp. 999–1005, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. M. C. Haigis and B. A. Yankner, “The aging stress response,” Molecular Cell, vol. 40, no. 2, pp. 333–344, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Y. Seo, A.-M. Joseph, D. Dutta, J. C. Y. Hwang, J. P. Aris, and C. Leeuwenburgh, “New insights into the role of mitochondria in aging: mitochondrial dynamics and more,” Journal of Cell Science, vol. 123, no. 15, pp. 2533–2542, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. K. C. Kregel and H. J. Zhang, “An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations,” The American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 292, no. 1, pp. R18–R36, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Storz, “Forkhead homeobox type O transcription factors in the responses to oxidative stress,” Antioxidants & Redox Signaling, vol. 14, no. 4, pp. 593–605, 2011. View at Publisher · View at Google Scholar
  11. W. Dröge, “Free radicals in the physiological control of cell function,” Physiological Reviews, vol. 82, no. 1, pp. 47–95, 2002. View at Google Scholar · View at Scopus
  12. W. Dröge and H. M. Schipper, “Oxidative stress and aberrant signaling in aging and cognitive decline,” Aging Cell, vol. 6, no. 3, pp. 361–370, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. H.-C. Yang, M.-L. Cheng, H.-Y. Ho, and D. Tsun-Yee Chiu, “The microbicidal and cytoregulatory roles of NADPH oxidases,” Microbes and Infection, vol. 13, no. 2, pp. 109–120, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. B. M. Babior, “NADPH oxidase: an update,” Blood, vol. 93, no. 5, pp. 1464–1476, 1999. View at Google Scholar · View at Scopus
  15. M. Reth, “Hydrogen peroxide as second messenger in lymphocyte activation,” Nature Immunology, vol. 3, no. 12, pp. 1129–1134, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, “Free radicals and antioxidants in normal physiological functions and human disease,” The International Journal of Biochemistry & Cell Biology, vol. 39, no. 1, pp. 44–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Pallela, Y. Na-Young, and S.-K. Kim, “Anti-photoaging and photoprotective compounds derived from marine organisms,” Marine Drugs, vol. 8, no. 4, pp. 1189–1202, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. A. J. Ridley, J. R. Whiteside, T. J. McMillan, and S. L. Allinson, “Cellular and sub-cellular responses to UVA in relation to carcinogenesis,” International Journal of Radiation Biology, vol. 85, no. 3, pp. 177–195, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Dittmann, C. Mayer, R. Kehlbach, M. C. Rothmund, and H. P. Rodemann, “Radiation-induced lipid peroxidation activates src kinase and triggers nuclear EGFR transport,” Radiotherapy & Oncology, vol. 92, no. 3, pp. 379–382, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Rigoulet, E. D. Yoboue, and A. Devin, “Mitochondrial ROS generation and its regulation: mechanisms involved in H2O2 signaling,” Antioxidants & Redox Signaling, vol. 14, no. 3, pp. 459–468, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. K.-J. Cho, J.-M. Seo, and J.-H. Kim, “Bioactive lipoxygenase metabolites stimulation of NADPH oxidases and reactive oxygen species,” Molecules and Cells, vol. 32, no. 1, pp. 1–5, 2011. View at Publisher · View at Google Scholar
  22. R. P. Brandes, N. Weissmann, and K. Schröder, “NADPH oxidases in cardiovascular disease,” Free Radical Biology & Medicine, vol. 49, no. 5, pp. 687–706, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. T. M. Paravicini and R. M. Touyz, “NADPH oxidases, reactive oxygen species, and hypertension,” Diabetes Care, vol. 31, supplement 2, pp. S170–S180, 2008. View at Google Scholar · View at Scopus
  24. F. Jiang, Y. Zhang, and G. J. Dusting, “NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair,” Pharmacological Reviews, vol. 63, no. 1, pp. 218–242, 2011. View at Publisher · View at Google Scholar
  25. A. A. Fatokun, T. W. Stone, and R. A. Smith, “Oxidative stress in neurodegeneration and available means of protection,” Frontiers in Bioscience, vol. 13, no. 9, pp. 3288–3311, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Calabrese, C. Cornelius, A. T. Dinkova-Kostova, E. J. Calabrese, and M. P. Mattson, “Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders,” Antioxidants & Redox Signaling, vol. 13, no. 11, pp. 1763–1811, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. J. D. Acharya and S. S. Ghaskadbi, “Islets and their antioxidant defense,” Islets, vol. 2, no. 4, pp. 225–235, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. S. V. Avery, “Molecular targets of oxidative stress,” Biochemical Journal, vol. 434, no. 2, pp. 201–210, 2011. View at Publisher · View at Google Scholar
  29. I. Dalle-Donne, A. Scaloni, D. Giustarini et al., “Proteins as biomarkers of oxidative/nitrosative stress in diseases: the contribution of redox proteomics,” Mass Spectrometry Reviews, vol. 24, no. 1, pp. 55–99, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Halliwell, “Oxidative stress and neurodegeneration: where are we now?” Journal of Neurochemistry, vol. 97, no. 6, pp. 1634–1658, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. G. I. Giles and C. Jacob, “Reactive sulfur species: an emerging concept in oxidative stress,” Biological Chemistry, vol. 383, no. 3-4, pp. 375–388, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. R. P. Guttmann, “Redox regulation of cysteine-dependent enzymes,” Journal of Animal Science, vol. 88, no. 4, pp. 1297–1306, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Colquhoun, “Lipids, mitochondria and cell death: implications in neuro-oncology,” Molecular Neurobiology, vol. 42, no. 1, pp. 76–88, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. L. M. Sayre, G. Perry, and M. A. Smith, “Oxidative stress and neurotoxicity,” Chemical Research in Toxicology, vol. 21, no. 1, pp. 172–188, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. M. P. Czubryt, J. A. Austria, and G. N. Pierce, “Hydrogen peroxide inhibition of nuclear protein import is mediated by the mitogen-activated protein kinase, ERK2,” The Journal of Cell Biology, vol. 148, no. 1, pp. 7–16, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. B. Halliwell, M. V. Clement, and L. H. Long, “Hydrogen peroxide in the human body,” FEBS Letters, vol. 486, no. 1, pp. 10–13, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. J. A. Imlay, “Cellular defenses against superoxide and hydrogen peroxide,” Annual Review of Biochemistry, vol. 77, no. 1, pp. 755–776, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. U. Stochaj, R. Rassadi, and J. Chiu, “Stress-mediated inhibition of the classical nuclear protein import pathway and nuclear accumulation of the small GTPase Gsp1p,” The FASEB Journal, vol. 14, no. 14, pp. 2130–2132, 2000. View at Google Scholar · View at Scopus
  39. M. Kodiha, A. Chu, N. Matusiewicz, and U. Stochaj, “Multiple mechanisms promote the inhibition of classical nuclear import upon exposure to severe oxidative stress,” Cell Death & Differentiation, vol. 11, no. 8, pp. 862–874, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Miyamoto, T. Saiwaki, J. Yamashita et al., “Cellular stresses induce the nuclear accumulation of importin α and cause a conventional nuclear import block,” The Journal of Cell Biology, vol. 165, no. 5, pp. 617–623, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Boisnard, G. Lagniel, C. Garmendia-Torres et al., “H2O2 activates the nuclear localization of Msn2 and Maf1 through thioredoxins in Saccharomyces cerevisiae,” Eukaryotic Cell, vol. 8, no. 9, pp. 1429–1438, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Song, J. Li, J. Qiao, S. Jain, B. M. Evers, and D. H. Chung, “PKD prevents H2O2-induced apoptosis via NF-κB and p38 MAPK in RIE-1 cells,” Biochemical and Biophysical Research Communications, vol. 378, no. 3, pp. 610–614, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. M. L. Circu and T. Y. Aw, “Reactive oxygen species, cellular redox systems, and apoptosis,” Free Radical Biology and Medicine, vol. 48, no. 6, pp. 749–762, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Lenzen, “Oxidative stress: the vulnerable β-cell,” Biochemical Society Transactions, vol. 36, no. 3, pp. 343–347, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. B. van Loon, E. Markkanen, and U. Hübscher, “Oxygen as a friend and enemy: how to combat the mutational potential of 8-oxo-guanine,” DNA Repair, vol. 9, no. 6, pp. 604–616, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. B. Halliwell, “Free radicals and antioxidants—quo vadis?” Trends in Pharmacological Sciences, vol. 32, no. 3, pp. 125–130, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. J. L. Evans, I. D. Goldfine, B. A. Maddux, and G. M. Grodsky, “Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes,” Endocrine Reviews, vol. 23, no. 5, pp. 599–622, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Jomova, D. Vondrakova, M. Lawson, and M. Valko, “Metals, oxidative stress and neurodegenerative disorders,” Molecular and Cellular Biochemistry, vol. 345, no. 1-2, pp. 91–104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. F. Giacco and M. Brownlee, “Oxidative stress and diabetic complications,” Circulation Research, vol. 107, no. 9, pp. 1058–1070, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Ren, L. Pulakat, A. Whaley-Connell, and J. R. Sowers, “Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease,” Journal of Molecular Medicine, vol. 88, no. 10, pp. 993–1001, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. R. Stanton, “Oxidative stress and diabetic kidney disease,” Current Diabetes Reports, vol. 11, no. 4, pp. 330–336, 2011. View at Publisher · View at Google Scholar
  52. C. K. Roberts and K. K. Sindhu, “Oxidative stress and metabolic syndrome,” Life Sciences, vol. 84, no. 21-22, pp. 705–712, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Chrissobolis, A. A. Miller, G. R. Drummond, B. K. Kemp-Harper, and C. G. Sobey, “Oxidative stress and endothelial dysfunction in cerebrovascular disease,” Frontiers in Bioscience, vol. 16, no. 5, pp. 1733–1745, 2011. View at Publisher · View at Google Scholar
  54. J. C. Jonas, M. Bensellam, J. Duprez, H. Elouil, Y. Guiot, and S. M. A. Pascal, “Glucose regulation of islet stress responses and β-cell failure in type 2 diabetes,” Diabetes, Obesity & Metabolism, vol. 11, supplement 4, pp. 65–81, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. J. L. Rains and S. K. Jain, “Oxidative stress, insulin signaling, and diabetes,” Free Radical Biology and Medicine, vol. 50, no. 5, pp. 567–575, 2011. View at Google Scholar
  56. S. Reuter, S. C. Gupta, M. M. Chaturvedi, and B. B. Aggarwal, “Oxidative stress, inflammation, and cancer: how are they linked?” Free Radical Biology and Medicine, vol. 49, no. 11, pp. 1603–1616, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. Y. S. Kanwar, J. Wada, L. Sun et al., “Diabetic nephropathy: mechanisms of renal disease progression,” Experimental Biology and Medicine, vol. 233, no. 1, pp. 4–11, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Tojo, K. Asaba, and M. L. Onozato, “Suppressing renal NADPH oxidase to treat diabetic nephropathy,” Expert Opinion on Therapeutic Targets, vol. 11, no. 8, pp. 1011–1018, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. P. Diaz Vivancos, T. Wolff, J. Markovic, F. V. Pallardó, and C. H. Foyer, “A nuclear glutathione cycle within the cell cycle,” Biochemical Journal, vol. 431, no. 2, pp. 169–178, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. H. R. López-Mirabal and J. R. Winther, “Redox characteristics of the eukaryotic cytosol,” Biochimica et Biophysica Acta—Molecular Cell Research, vol. 1783, no. 4, pp. 629–640, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. D. P. Jones and Y. M. Go, “Redox compartmentalization and cellular stress,” Diabetes, Obesity and Metabolism, vol. 12, no. 2, pp. 116–125, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. É. Margittai and R. Sitia, “Oxidative protein folding in the secretory pathway and redox signaling across compartments and cells,” Traffic, vol. 12, no. 1, pp. 1–8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. O. Blokhina, E. Virolainen, and K. V. Fagerstedt, “Antioxidants, oxidative damage and oxygen deprivation stress: a review,” Annals of Botany, vol. 91, pp. 179–194, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. T. Fukai and M. Ushio-Fukai, “Superoxide dismutases: role in redox signaling, vascular function and diseases,” Antioxidants & Redox Signaling, vol. 15, no. 6, pp. 1583–1606, 2011. View at Google Scholar
  65. A. Valdivia, S. Pérez-Álvarez, J. D. Aroca-Aguilar, I. Ikuta, and J. Jordán, “Superoxide dismutases: a physiopharmacological update,” Journal of Physiology & Biochemistry, vol. 65, no. 2, pp. 195–208, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. H. Jefferies, J. Coster, A. Khalil, J. Bot, R. D. McCauley, and J. C. Hall, “Glutathione,” ANZ Journal of Surgery, vol. 73, no. 7, pp. 517–522, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. N. S. Dhalla, A. B. Elmoselhi, T. Hata, and N. Makino, “Status of myocardial antioxidants in ischemia-reperfusion injury,” Cardiovascular Research, vol. 47, no. 3, pp. 446–456, 2000. View at Publisher · View at Google Scholar · View at Scopus
  68. D. M. Townsend, K. D. Tew, and H. Tapiero, “The importance of glutathione in human disease,” Biomedicine & Pharmacotherapy, vol. 57, no. 3-4, pp. 145–155, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Kodiha, D. Tran, C. Qian et al., “Oxidative stress mislocalizes and retains transport factor importin-α and nucleoporins Nup153 and Nup88 in nuclei where they generate high molecular mass complexes,” Biochimica et Biophysica Acta—Molecular Cell Research, vol. 1783, no. 3, pp. 405–418, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. K. Weis, “Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle,” Cell, vol. 112, no. 4, pp. 441–451, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. S. R. Wente and M. P. Rout, “The nuclear pore complex and nuclear transport,” Cold Spring Harbor Perspectives in Biology, vol. 2, no. 10, pp. 1–19, 2010. View at Google Scholar
  72. M. Kodiha, N. Crampton, S. Shrivastava, R. Umar, and U. Stochaj, “Traffic control at the nuclear pore,” Nucleus, vol. 1, no. 3, pp. 237–244, 2010. View at Google Scholar · View at Scopus
  73. I. K. H. Poon and D. A. Jans, “Regulation of nuclear transport: central role in development and transformation?” Traffic, vol. 6, no. 3, pp. 173–186, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. S. A. Adam, “The nuclear transport machinery in Caenorhabditis elegans: a central role in morphogenesis,” Seminars in Cell & Developmental Biology, vol. 20, no. 5, pp. 576–581, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. D. Adam Mason and D. S. Goldfarb, “The nuclear transport machinery as a regulator of Drosophila development,” Seminars in Cell & Developmental Biology, vol. 20, no. 5, pp. 582–589, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. S. Hutten and R. H. Kehlenbach, “CRM1-mediated nuclear export: to the pore and beyond,” Trends in Cell Biology, vol. 17, no. 4, pp. 193–201, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. N. Kudo, N. Matsumori, H. Taoka et al., “Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 16, pp. 9112–9117, 1999. View at Publisher · View at Google Scholar · View at Scopus
  78. D. A. Jans, C.-Y. Xiao, and M. H. C. Lam, “Nuclear targeting signal recognition: a key control point in nuclear transport?” BioEssays, vol. 22, no. 6, pp. 532–544, 2000. View at Publisher · View at Google Scholar · View at Scopus
  79. N. Crampton, M. Kodiha, S. Shrivastava, R. Umar, and U. Stochaj, “Oxidative stress inhibits nuclear protein export by multiple mechanisms that target FG nucleoporins and Crm1,” Molecular Biology of the Cell, vol. 20, no. 24, pp. 5106–5116, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. M. J. Morgan and Z. G. Liu, “Crosstalk of reactive oxygen species and NF-κB signaling,” Cell Research, vol. 21, no. 1, pp. 103–115, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. P. Ak and A. J. Levine, “p53 and NF-κB: different strategies for responding to stress lead to a functional antagonism,” The FASEB Journal, vol. 24, no. 10, pp. 3643–3652, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. V. P. Patel and C. T. Chu, “Nuclear transport, oxidative stress, and neurodegeneration,” International Journal of Clinical and Experimental Pathology, vol. 4, no. 3, pp. 215–229, 2011. View at Google Scholar
  83. A. Giudice, C. Arra, and M. C. Turco, “Review of molecular mechanisms involved in the activation of the Nrf2-ARE signaling pathway by chemopreventive agents,” Methods in Molecular Biology, vol. 647, pp. 37–74, 2010. View at Google Scholar
  84. A. Martín-Montalvo, J. M. Villalba, P. Navas, and R. de Cabo, “NRF2, cancer and calorie restriction,” Oncogene, vol. 30, no. 5, pp. 505–520, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Theodore, Y. Kawai, J. Yang et al., “Multiple nuclear localization signals function in the nuclear import of the transcription factor Nrf2,” Journal of Biological Chemistry, vol. 283, no. 14, pp. 8984–8994, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. A. K. Jain, D. A. Bloom, and A. K. Jaiswal, “Nuclear import and export signals in control of Nrf2,” Journal of Biological Chemistry, vol. 280, no. 32, pp. 29158–29168, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. D. Tang, R. Kang, H. J. Zeh, and M. T. Lotze, “High-mobility group box 1, oxidative stress, and disease,” Antioxidants & Redox Signaling, vol. 14, no. 7, pp. 1315–1335, 2011. View at Publisher · View at Google Scholar
  88. C. Tristan, N. Shahani, T. W. Sedlak, and A. Sawa, “The diverse functions of GAPDH: views from different subcellular compartments,” Cellular Signalling, vol. 23, no. 2, pp. 317–323, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. T. Bonaldi, F. Talamo, P. Scaffidi et al., “Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion,” The EMBO Journal, vol. 22, no. 20, pp. 5551–5560, 2003. View at Publisher · View at Google Scholar · View at Scopus
  90. H. Y. Ju and J.-S. Shin, “Nucleocytoplasmic shuttling of HMGB1 is regulated by phosphorylation that redirects it toward secretion,” The Journal of Immunology, vol. 177, no. 11, pp. 7889–7897, 2006. View at Google Scholar · View at Scopus
  91. D. Tang, Y. Shi, R. Kang et al., “Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1,” Journal of Leukocyte Biology, vol. 81, no. 3, pp. 741–747, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. K. Hayakawa, K. Arai, and E. H. Lo, “Role of ERK MAP kinase and CRM1 in IL-1β-stimulated release of HMGB1 from cortical astrocytes,” Glia, vol. 58, no. 8, pp. 1007–1015, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. D. A. Butterfield, S. S. Hardas, and M. L. B. Lange, “Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer's disease: many pathways to neurodegeneration,” Journal of Alzheimer's Disease, vol. 20, no. 2, pp. 369–393, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. S. Azam, N. Jouvet, A. Jilani et al., “Human glyceraldehyde-3-phosphate dehydrogenase plays a direct role in reactivating oxidized forms of the DNA repair enzyme APE1,” Journal of Biological Chemistry, vol. 283, no. 45, pp. 30632–30641, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. M. R. Hara, M. B. Cascio, and A. Sawa, “GAPDH as a sensor of NO stress,” Biochimica et Biophysica Acta, vol. 1762, no. 5, pp. 502–509, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. H. J. Kwon, J. H. Rhim, I. S. Jang, G. E. Kim, S. C. Park, and E. J. Yeo, “Activation of AMP-activated protein kinase stimulates the nuclear localization of glyceraldehyde 3-phosphate dehydrogenase in human diploid fibroblasts,” Experimental & Molecular Medicine, vol. 42, no. 4, pp. 254–269, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. S. Madsen-Bouterse, G. Mohammad, and R. A. Kowluru, “Glyceraldehyde-3-phosphate dehydrogenase in retinal microvasculature: implications for the development and progression of diabetic retinopathy,” Investigative Ophthalmology & Visual Science, vol. 51, no. 3, pp. 1765–1772, 2010. View at Google Scholar · View at Scopus
  98. H. Nakajima, W. Amano, T. Kubo et al., “Glyceraldehyde-3-phosphate dehydrogenase aggregate formation participates in oxidative stress-induced cell death,” Journal of Biological Chemistry, vol. 284, no. 49, pp. 34331–34341, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. M. A. Ortiz-Ortiz, J. M. Morán, L. M. Ruiz-Mesa, J. M. B. Pedro, and J. M. Fuentes, “Paraquat exposure induces nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the activation of the nitric oxide-GAPDH-Siah cell death cascade,” Toxicological Sciences, vol. 116, no. 2, pp. 614–622, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. J. Park, D. Han, K. Kim, Y. Kang, and Y. Kim, “O-GlcNAcylation disrupts glyceraldehyde-3-phosphate dehydrogenase homo-tetramer formation and mediates its nuclear translocation,” Biochimica et Biophysica Acta, vol. 1794, no. 2, pp. 254–262, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. M. Ventura, F. Mateo, J. Serratosa et al., “Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase is regulated by acetylation,” The International Journal of Biochemistry & Cell Biology, vol. 42, no. 10, pp. 1672–1680, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. N. E. Zachara, N. O'Donnell, W. D. Cheung, J. J. Mercer, J. D. Marth, and G. W. Hart, “Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress,” Journal of Biological Chemistry, vol. 279, no. 29, pp. 30133–30142, 2004. View at Publisher · View at Google Scholar · View at Scopus
  103. A. Martínez, M. Portero-Otin, R. Pamplona, and I. Ferrer, “Protein targets of oxidative damage in human neurodegenerative diseases with abnormal protein aggregates,” Brain Pathology, vol. 20, no. 2, pp. 281–297, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. M. T. Lin and M. F. Beal, “Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases,” Nature, vol. 443, no. 7113, pp. 787–795, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. J. P. Morrison, M. C. Coleman, E. S. Aunan, S. A. Walsh, D. R. Spitz, and K. C. Kregel, “Aging reduces responsiveness to BSO- and heat stress-induced perturbations of glutathione and antioxidant enzymes,” The American Journal of Physiology—Regulatory Integrative & Comparative Physiology, vol. 289, no. 4, pp. R1035–R1041, 2005. View at Publisher · View at Google Scholar · View at Scopus
  106. D. K. Singh, P. Winocour, and K. Farrington, “Oxidative stress in early diabetic nephropathy: fueling the fire,” Nature Reviews Endocrinology, vol. 7, no. 3, pp. 176–184, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. P. M. P. Balakumar, M. K. M. Arora, J. M. Reddy, and M. B. P. Anand-Srivastava, “Pathophysiology of diabetic nephropathy: involvement of multifaceted signalling mechanism,” Journal of Cardiovascular Pharmacology, vol. 54, no. 2, pp. 129–138, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. M. Brownlee, “The pathobiology of diabetic complications,” Diabetes, vol. 54, no. 6, pp. 1615–1625, 2005. View at Publisher · View at Google Scholar · View at Scopus
  109. T. Nishikawa, D. Edelstein, X. L. Du et al., “Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage,” Nature, vol. 404, no. 6779, pp. 787–790, 2000. View at Publisher · View at Google Scholar · View at Scopus
  110. X. Cheng, R. C. M. Siow, and G. E. Mann, “Impaired redox signaling and antioxidant gene expression in endothelial cells in diabetes: a role for mitochondria and the nuclear factor-E2-related factor 2-Kelch-like ECH-associated protein 1 defense pathway,” Antioxidants & Redox Signaling, vol. 14, no. 3, pp. 469–487, 2011. View at Publisher · View at Google Scholar · View at Scopus
  111. M. Brownlee, “Biochemistry and molecular cell biology of diabetic complications,” Nature, vol. 414, no. 6865, pp. 813–820, 2001. View at Publisher · View at Google Scholar · View at Scopus
  112. R. G. Baker, M. S. Hayden, and S. Ghosh, “NF-κB, inflammation, and metabolic disease,” Cell Metabolism, vol. 13, no. 1, pp. 11–22, 2011. View at Publisher · View at Google Scholar · View at Scopus
  113. M. Kodiha, P. Bański, D. Ho-Wo-Cheong, and U. Stochaj, “Dissection of the molecular mechanisms that control the nuclear accumulation of transport factors importin-α and CAS in stressed cells,” Cellular & Molecular Life Sciences, vol. 65, no. 11, pp. 1756–1767, 2008. View at Publisher · View at Google Scholar · View at Scopus
  114. M. Kodiha, P. Bański, and U. Stochaj, “Interplay between MEK and PI3 kinase signaling regulates the subcellular localization of protein kinases ERK1/2 and Akt upon oxidative stress,” FEBS Letters, vol. 583, no. 12, pp. 1987–1993, 2009. View at Publisher · View at Google Scholar · View at Scopus
  115. M. Kodiha, A. Chu, O. Lazrak, and U. Stochaj, “Stress inhibits nucleocytoplasmic shuttling of heat shock protein hsc70,” The American Journal of Physiology—Cell Physiology, vol. 289, no. 4, pp. C1034–C1041, 2005. View at Publisher · View at Google Scholar · View at Scopus
  116. M. Kodiha, J. G. Rassi, C. M. Brown, and U. Stochaj, “Localization of AMP kinase is regulated by stress, cell density, and signaling through the MEK→ERK1/2 pathway,” The American Journal of Physiology—Cell Physiology, vol. 293, no. 5, pp. C1427–C1436, 2007. View at Publisher · View at Google Scholar · View at Scopus
  117. M. Kodiha, D. Tran, A. Morogan, C. Qian, and U. Stochaj, “Dissecting the signaling events that impact classical nuclear import and target nuclear transport factors,” PloS One, vol. 4, no. 12, article e8420, 2009. View at Google Scholar · View at Scopus
  118. Z. S. Chughtai, R. Rassadi, N. Matusiewicz, and U. Stochaj, “Starvation promotes nuclear accumulation of the hsp70 Ssa4p in yeast cells,” Journal of Biological Chemistry, vol. 276, no. 23, pp. 20261–20266, 2001. View at Publisher · View at Google Scholar · View at Scopus
  119. X. Quan, P. Tsoulos, A. Kuritzky, R. Zhang, and U. Stochaj, “The carrier Msn5p/Kap142p promotes nuclear export of the hsp70 Ssa4p and relocates in response to stress,” Molecular Microbiology, vol. 62, no. 2, pp. 592–609, 2006. View at Publisher · View at Google Scholar · View at Scopus
  120. X. Quan, R. Rassadi, B. Rabie, N. Matusiewicz, and U. Stochaj, “Regulated nuclear accumulation of the yeast hsp70 Ssa4p in ethanol-stressed cells is mediated by the N-terminal domain, requires the nuclear carrier Nmd5p and protein kinase C,” The FASEB Journal, vol. 18, no. 7, pp. 899–901, 2004. View at Google Scholar · View at Scopus
  121. A. Chu, N. Matusiewicz, and U. Stochaj, “Heat-induced nuclear accumulation of hsc70s is regulated by phosphorylation and inhibited in confluent cells,” The FASEB Journal, vol. 15, no. 8, pp. 1478–1480, 2001. View at Google Scholar · View at Scopus
  122. L. Sánchez, M. Kodiha, and U. Stochaj, “Monitoring the disruption of nuclear envelopes in interphase cells with GFP-beta-galactosidase,” Journal of Biomolecular Techniques, vol. 16, no. 3, pp. 235–238, 2005. View at Google Scholar · View at Scopus
  123. R. S. Faustino, P. Cheung, M. N. Richard et al., “Ceramide regulation of nuclear protein import,” Journal of Lipid Research, vol. 49, no. 3, pp. 654–662, 2008. View at Publisher · View at Google Scholar · View at Scopus
  124. X. Li, K. A. Becker, and Y. Zhang, “Ceramide in redox signaling and cardiovascular diseases,” Cellular Physiology & Biochemistry, vol. 26, no. 1, pp. 41–48, 2010. View at Publisher · View at Google Scholar · View at Scopus
  125. J.-S. Won and I. Singh, “Sphingolipid signaling and redox regulation,” Free Radical Biology & Medicine, vol. 40, no. 11, pp. 1875–1888, 2006. View at Publisher · View at Google Scholar · View at Scopus
  126. R. S. Faustino, L. N. W. Stronger, M. N. Richard et al., “RanGAP-mediated nuclear protein import in vascular smooth muscle cells is augmented by lysophosphatidylcholine,” Molecular Pharmacology, vol. 71, no. 2, pp. 438–445, 2007. View at Publisher · View at Google Scholar · View at Scopus
  127. J. W. Zmijewski, A. Landar, N. Watanabe, D. A. Dickinson, N. Noguchi, and V. M. Darley-Usmar, “Cell signalling by oxidized lipids and the role of reactive oxygen species in the endothelium,” Biochemical Society Transactions, vol. 33, no. 6, pp. 1385–1389, 2005. View at Publisher · View at Google Scholar · View at Scopus
  128. R. S. Faustino, D. C. Rousseau, M. N. Landry, A. L. Kostenuk, and G. N. Pierce, “Effects of mitogen-activated protein kinases on nuclear protein import,” Canadian Journal of Physiology & Pharmacology, vol. 84, no. 3-4, pp. 469–475, 2006. View at Publisher · View at Google Scholar · View at Scopus
  129. R. S. Faustino, T. G. Maddaford, and G. N. Pierce, “Mitogen activated protein kinase at the nuclear pore complex,” Journal of Cellular and Molecular Medicine, vol. 15, no. 4, pp. 928–937, 2011. View at Publisher · View at Google Scholar
  130. H. Kosako, N. Yamaguchi, C. Aranami et al., “Phosphoproteomics reveals new ERK MAP kinase targets and links ERK to nucleoporin-mediated nuclear transport,” Nature Structural and Molecular Biology, vol. 16, no. 10, pp. 1026–1035, 2009. View at Publisher · View at Google Scholar · View at Scopus
  131. S.-O. Yoon, S. Shin, Y. Liu et al., “Ran-binding protein 3 phosphorylation links the Ras and PI3-kinase pathways to nucleocytoplasmic transport,” Molecular Cell, vol. 29, no. 3, pp. 362–375, 2008. View at Publisher · View at Google Scholar · View at Scopus
  132. F. Dai, X. Lin, C. Chang, and X.-H. Feng, “Nuclear export of Smad2 and Smad3 by RanBP3 facilitates termination of TGF-beta signaling,” Developmental Cell, vol. 16, no. 3, pp. 345–357, 2009. View at Publisher · View at Google Scholar · View at Scopus
  133. K. Koli, M. Myllärniemi, J. Keski-Oja, and V. L. Kinnula, “Transforming growth factor-β activation in the lung: focus on fibrosis and reactive oxygen species,” Antioxidants & Redox Signaling, vol. 10, no. 2, pp. 333–342, 2008. View at Publisher · View at Google Scholar
  134. X. Z. Shi, J. H. Winston, and S. K. Sarna, “Differential immune and genetic responses in rat models of Crohn's colitis and ulcerative colitis,” The American Journal of Physiology—Gastrointestinal & Liver Physiology, vol. 300, no. 1, pp. G41–G51, 2011. View at Publisher · View at Google Scholar · View at Scopus
  135. H. Sone, H. Akanuma, and T. Fukuda, “Oxygenomics in environmental stress,” Redox Report, vol. 15, no. 3, pp. 98–114, 2010. View at Publisher · View at Google Scholar · View at Scopus
  136. G. H. Tesch and A. K. Lim, “Recent insights into diabetic renal injury from the db/db mouse model of type 2 diabetic nephropathy,” The American Journal of Physiology—Renal Physiology, vol. 300, no. 2, pp. F301–F310, 2011. View at Publisher · View at Google Scholar
  137. C. S. Hill, “Nucleocytoplasmic shuttling of Smad proteins,” Cell Research, vol. 19, no. 1, pp. 36–46, 2009. View at Google Scholar
  138. M. A. D'Angelo, M. Raices, S. H. Panowski, and M. W. Hetzer, “Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells,” Cell, vol. 136, no. 2, pp. 284–295, 2009. View at Publisher · View at Google Scholar · View at Scopus
  139. P. Anderson and N. Kedersha, “Stress granules: the Tao of RNA triage,” Trends in Biochemical Sciences, vol. 33, no. 3, pp. 141–150, 2008. View at Publisher · View at Google Scholar · View at Scopus
  140. M. G. Thomas, M. Loschi, M. A. Desbats, and G. L. Boccaccio, “RNA granules: the good, the bad and the ugly,” Cellular Signalling, vol. 23, no. 2, pp. 324–334, 2011. View at Publisher · View at Google Scholar · View at Scopus
  141. J. R. Buchan and R. Parker, “Eukaryotic stress granules: the ins and outs of translation,” Molecular Cell, vol. 36, no. 6, pp. 932–941, 2009. View at Publisher · View at Google Scholar · View at Scopus
  142. N.-P. Tsai and L.-N. Wei, “RhoA/ROCK1 signaling regulates stress granule formation and apoptosis,” Cellular Signalling, vol. 22, no. 4, pp. 668–675, 2010. View at Publisher · View at Google Scholar · View at Scopus
  143. N.-P. Tsai, P.-C. Ho, and L.-N. Wei, “Regulation of stress granule dynamics by Grb7 and FAK signalling pathway,” The EMBO Journal, vol. 27, no. 5, pp. 715–726, 2008. View at Publisher · View at Google Scholar · View at Scopus
  144. S. Basuroy, M. Dunagan, P. Sheth, A. Seth, and R. K. Rao, “Hydrogen peroxide activates focal adhesion kinase and c-Src by a phosphatidylinositol 3 kinase-dependent mechanism and promotes cell migration in Caco-2 cell monolayers,” The American Journal of Physiology—Gastrointestinal & Liver Physiology, vol. 299, no. 1, pp. G186–G195, 2010. View at Publisher · View at Google Scholar · View at Scopus
  145. K. Fujimura, T. Suzuki, Y. Yasuda, M. Murata, J. Katahira, and Y. Yoneda, “Identification of importin α1 as a novel constituent of RNA stress granules,” Biochimica et Biophysica Acta—Molecular Cell Research, vol. 1803, no. 7, pp. 865–871, 2010. View at Publisher · View at Google Scholar · View at Scopus
  146. S. Mollet, N. Cougot, A. Wilczynska et al., “Translationally repressed mRNA transiently cycles through stress granules during stress,” Molecular Biology of the Cell, vol. 19, no. 10, pp. 4469–4479, 2008. View at Publisher · View at Google Scholar · View at Scopus
  147. W. J. Kim, S. H. Back, V. Kim, I. Ryu, and S. K. Jang, “Sequestration of TRAF2 into stress granules interrupts tumor necrosis factor signaling under stress conditions,” Molecular and Cellular Biology, vol. 25, no. 6, pp. 2450–2462, 2005. View at Publisher · View at Google Scholar · View at Scopus
  148. N. Kedersha and P. Anderson, “Mammalian stress granules and processing bodies,” Methods in Enzymology, vol. 431, pp. 61–81, 2007. View at Publisher · View at Google Scholar · View at Scopus
  149. L. Weinmann, J. Höck, T. Ivacevic et al., “Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs,” Cell, vol. 136, no. 3, pp. 496–507, 2009. View at Publisher · View at Google Scholar · View at Scopus
  150. W.-L. Chang and W.-Y. Tarn, “A role for transportin in deposition of TTP to cytoplasmic RNA granules and mRNA decay,” Nucleic Acids Research, vol. 37, no. 19, pp. 6600–6612, 2009. View at Publisher · View at Google Scholar · View at Scopus
  151. M. Ito, K. Miyado, K. Nakagawa et al., “Age-associated changes in the subcellular localization of phosphorylated p38 MAPK in human granulosa cells,” Molecular Human Reproduction, vol. 16, no. 12, pp. 928–937, 2010. View at Publisher · View at Google Scholar · View at Scopus
  152. N. R. Leslie, “The redox regulation of PI 3-kinase-dependent signaling,” Antioxidants & Redox Signaling, vol. 8, no. 9-10, pp. 1765–1774, 2006. View at Publisher · View at Google Scholar · View at Scopus
  153. P. Storz, “Reactive oxygen species-mediated mitochondria-to-nucleus signaling: a key to aging and radical-caused diseases,” Science's STKE, vol. 2006, no. 332, p. re3, 2006. View at Publisher · View at Google Scholar · View at Scopus
  154. J.-F. L. Bodart, “Extracellular-regulated kinase—mitogen-activated protein kinase cascade: unsolved issues,” Journal of Cellular Biochemistry, vol. 109, no. 5, pp. 850–857, 2010. View at Publisher · View at Google Scholar · View at Scopus
  155. L. T. May and S. J. Hill, “ERK phosphorylation: spatial and temporal regulation by G protein-coupled receptors,” The International Journal of Biochemistry & Cell Biology, vol. 40, no. 10, pp. 2013–2017, 2008. View at Publisher · View at Google Scholar · View at Scopus
  156. B. Ananthanarayanan, Q. Ni, and J. Zhang, “Signal propagation from membrane messagers to nuclear effectors revealed by reporters of phosphoinositide dynamics and Akt activity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 42, pp. 15081–15086, 2005. View at Publisher · View at Google Scholar · View at Scopus
  157. A. Kumar, J. Redondo-Muñoz, V. Perez-García, I. Cortes, M. Chagoyen, and A. C. Carrera, “Nuclear but not cytosolic phosphoinositide 3-kinase beta has an essential function in cell survival,” Molecular and Cellular Biology, vol. 31, no. 10, pp. 2122–2133, 2011. View at Publisher · View at Google Scholar
  158. M. Kodiha and U. Stochaj, “Targeting AMPK for therapeutic intervention in type 2 diabetes,” in Medical Complications of Type 2 Diabetes, C. Croniger, Ed., InTech, 2011, http://www.intechopen.com/articles/show/title/targeting-ampk-for-therapeutic-intervention-in-type-2-diabetes. View at Google Scholar
  159. D. G. Hardie, “AMPK: a key regulator of energy balance in the single cell and the whole organism,” International Journal of Obesity, vol. 32, supplement 4, pp. S7–S12, 2008. View at Publisher · View at Google Scholar · View at Scopus
  160. G. R. Steinberg and B. E. Kemp, “AMPK in health and disease,” Physiological Reviews, vol. 89, no. 3, pp. 1025–1078, 2009. View at Publisher · View at Google Scholar · View at Scopus
  161. B. Viollet, S. Horman, J. Leclerc et al., “AMPK inhibition in health and disease,” Critical Reviews in Biochemistry & Molecular Biology, vol. 45, no. 4, pp. 276–295, 2010. View at Publisher · View at Google Scholar · View at Scopus
  162. N. Kazgan, T. Williams, L. J. Forsberg, and J. E. Brenman, “Identification of a nuclear export signal in the catalytic subunit of AMP-activated protein kinase,” Molecular Biology of the Cell, vol. 21, no. 19, pp. 3433–3442, 2010. View at Publisher · View at Google Scholar · View at Scopus
  163. W. Wang, X. Yang, T. Kawai et al., “AMP-activated protein kinase-regulated phosphorylation and acetylation of importin α1: involvement in the nuclear import of RNA-binding protein HuR,” Journal of Biological Chemistry, vol. 279, no. 46, pp. 48376–48388, 2004. View at Publisher · View at Google Scholar · View at Scopus
  164. H. W. Lo and M. C. Hung, “Nuclear EGFR signalling network in cancers: linking EGFR pathway to cell cycle progression, nitric oxide pathway and patient survival,” The British Journal of Cancer, vol. 94, no. 2, pp. 184–188, 2006. View at Publisher · View at Google Scholar · View at Scopus
  165. Y.-N. Wang, H. Yamaguchi, L. Huo et al., “The translocon Sec61β localized in the inner nuclear membrane transports membrane-embedded EGF receptor to the nucleus,” Journal of Biological Chemistry, vol. 285, no. 49, pp. 38720–38729, 2010. View at Publisher · View at Google Scholar · View at Scopus
  166. H.-W. Lo, M. Ali-Seyed, Y. Wu, G. Bartholomeusz, S. C. Hsu, and M. C. Hung, “Nuclear-cytoplasmic transport of EGFR involves receptor endocytosis, importin β1 and CRM1,” Journal of Cellular Biochemistry, vol. 98, no. 6, pp. 1570–1583, 2006. View at Publisher · View at Google Scholar · View at Scopus
  167. C.-J. Chang, D. J. Mulholland, B. Valamehr, S. Mosessian, W. R. Sellers, and H. Wu, “PTEN nuclear localization is regulated by oxidative stress and mediates p53-dependent tumor suppression,” Molecular and Cellular Biology, vol. 28, no. 10, pp. 3281–3289, 2008. View at Publisher · View at Google Scholar · View at Scopus
  168. J.-L. Liu, Z. Mao, T. A. LaFortune et al., “Cell cycle-dependent nuclear export of phosphatase and tensin homologue tumor suppressor is regulated by the phosphoinositide-3-kinase signaling cascade,” Cancer Research, vol. 67, no. 22, pp. 11054–11063, 2007. View at Publisher · View at Google Scholar · View at Scopus
  169. I. Dalle-Donne, G. Aldini, M. Carini, R. Colombo, R. Rossi, and A. Milzani, “Protein carbonylation, cellular dysfunction, and disease progression,” Journal of Cellular and Molecular Medicine, vol. 10, no. 2, pp. 389–406, 2006. View at Publisher · View at Google Scholar · View at Scopus
  170. P. Wang, G.-H. Liu, K. Wu et al., “Repression of classical nuclear export by S-nitrosylation of CRM1,” Journal of Cell Science, vol. 122, no. 20, pp. 3772–3779, 2009. View at Publisher · View at Google Scholar · View at Scopus
  171. E. Giannoni, M. L. Taddei, and P. Chiarugi, “Src redox regulation: again in the front line,” Free Radical Biology and Medicine, vol. 49, no. 4, pp. 516–527, 2010. View at Publisher · View at Google Scholar · View at Scopus
  172. T. Adachi, D. R. Pimentel, T. Heibeck et al., “S-glutathiolation of Ras mediates redox-sensitive signaling by angiotensin II in vascular smooth muscle cells,” Journal of Biological Chemistry, vol. 279, no. 28, pp. 29857–29862, 2004. View at Publisher · View at Google Scholar · View at Scopus
  173. A. Aghajanian, E. S. Wittchen, S. L. Campbell, and K. Burridge, “Direct activation of RhoA by reactive oxygen species requires a redox-sensitive motif,” PloS One, vol. 4, no. 11, article e8045, 2009. View at Google Scholar · View at Scopus
  174. N. Brandes, S. Schmitt, and U. Jakob, “Thiol-based redox switches in eukaryotic proteins,” Antioxidants & Redox Signaling, vol. 11, no. 5, pp. 997–1014, 2009. View at Publisher · View at Google Scholar · View at Scopus
  175. E. Giannoni, F. Buricchi, G. Grimaldi et al., “Redox regulation of anoikis: reactive oxygen species as essential mediators of cell survival,” Cell Death & Differentiation, vol. 15, no. 5, pp. 867–878, 2008. View at Publisher · View at Google Scholar · View at Scopus
  176. E. Giannoni, G. Raugei, P. Chiarugi, and G. Ramponi, “A novel redox-based switch: LMW-PTP oxidation enhances Grb2 binding and leads to ERK activation,” Biochemical & Biophysical Research Communications, vol. 348, no. 2, pp. 367–373, 2006. View at Publisher · View at Google Scholar · View at Scopus
  177. C. Butkinaree, K. Park, and G. W. Hart, “O-linked β-N-acetylglucosamine (O-GlcNAc): extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress,” Biochimica et Biophysica Acta—General Subjects, vol. 1800, no. 2, pp. 96–106, 2010. View at Publisher · View at Google Scholar · View at Scopus
  178. R. M. Green, M. Graham, M. R. O'Donovan, J. K. Chipman, and N. J. Hodges, “Subcellular compartmentalization of glutathione: correlations with parameters of oxidative stress related to genotoxicity,” Mutagenesis, vol. 21, no. 6, pp. 383–390, 2006. View at Publisher · View at Google Scholar · View at Scopus
  179. F. Johnson and C. Giulivi, “Superoxide dismutases and their impact upon human health,” Molecular Aspects of Medicine, vol. 26, no. 4-5, pp. 340–352, 2005. View at Publisher · View at Google Scholar · View at Scopus
  180. M. Schrader and H. D. Fahimi, “Peroxisomes and oxidative stress,” Biochimica et Biophysica Acta—Molecular Cell Research, vol. 1763, no. 12, pp. 1755–1766, 2006. View at Publisher · View at Google Scholar · View at Scopus
  181. P. D. Vivancos, Y. Dong, K. Ziegler et al., “Recruitment of glutathione into the nucleus during cell proliferation adjusts whole-cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shield,” The Plant Journal, vol. 64, no. 5, pp. 825–838, 2010. View at Publisher · View at Google Scholar · View at Scopus
  182. J. Markovic, N. J. Mora, A. M. Broseta et al., “The depletion of nuclear glutathione impairs cell proliferation in 3t3 fibroblasts,” PLoS One, vol. 4, no. 7, article e6413, 2009. View at Publisher · View at Google Scholar · View at Scopus
  183. K. Kamada, S. Goto, T. Okunaga et al., “Nuclear glutathione S-transferase π prevents apoptosis by reducing the oxidative stress-induced formation of exocyclic DNA products,” Free Radical Biology & Medicine, vol. 37, no. 11, pp. 1875–1884, 2004. View at Publisher · View at Google Scholar · View at Scopus
  184. J. C. Young, J. M. Barral, and F. U. Hartl, “More than folding: localized functions of cytosolic chaperones,” Trends in Biochemical Sciences, vol. 28, no. 10, pp. 541–547, 2003. View at Publisher · View at Google Scholar · View at Scopus
  185. P. Bański, M. Kodiha, and U. Stochaj, “Chaperones and multitasking proteins in the nucleolus: networking together for survival?” Trends in Biochemical Sciences, vol. 35, no. 7, pp. 361–367, 2010. View at Publisher · View at Google Scholar · View at Scopus
  186. P. Bański, M. Kodiha, and U. Stochaj, “Exploring the nuclear proteome: novel concepts for chaperone trafficking and function,” Current Proteomics, vol. 8, no. 1, pp. 59–82, 2011. View at Publisher · View at Google Scholar
  187. O. Huet, L. Dupic, A. Harrois, and J. Duranteau, “Oxidative stress and endothelial dysfunction during sepsis,” Frontiers in Bioscience, vol. 16, no. 5, pp. 1986–1995, 2011. View at Publisher · View at Google Scholar
  188. J. Pi, Q. Zhang, J. Fu et al., “ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function,” Toxicology and Applied Pharmacology, vol. 244, no. 1, pp. 77–83, 2010. View at Publisher · View at Google Scholar · View at Scopus
  189. V. Paupe, E. P. Dassa, S. Goncalves et al., “Impaired nuclear Nrf2 translocation undermines the oxidative stress response in Friedreich ataxia,” PLoS One, vol. 4, no. 1, article e4253, 2009. View at Publisher · View at Google Scholar · View at Scopus