Table of Contents Author Guidelines Submit a Manuscript
Journal of Toxicology
Volume 2011, Article ID 503576, 7 pages
Research Article

Toxicity of Volatile Methylated Species of Bismuth, Arsenic, Tin, and Mercury in Mammalian Cells In Vitro

1Institute of Hygiene and Occupational Medicine, University of Duisburg-Essen, Hufelandstraße 55, 45122 Essen, Germany
2Institute of Environmental Analytical Chemistry, University of Duisburg-Essen, Universitaetsstraße 3-5, 45141 Essen, Germany

Received 13 June 2011; Revised 8 August 2011; Accepted 8 August 2011

Academic Editor: Michael Aschner

Copyright © 2011 E. Dopp et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The biochemical transformation of mercury, tin, arsenic and bismuth through formation of volatile alkylated species performs a fundamental role in determining the environmental processing of these elements. While the toxicity of inorganic forms of most of these compounds are well documented (e.g., arsenic, mercury) and some of them are of relatively low toxicity (e.g., tin, bismuth), the more lipid-soluble organometals can be highly toxic. In the present study we investigated the cyto- and genotoxicity of five volatile metal(loid) compounds: trimethylbismuth, dimethylarsenic iodide, trimethylarsine, tetramethyltin, and dimethylmercury. As far as we know, this is the first study investigating the toxicity of volatile metal(loid) compounds in vitro. Our results showed that dimethylmercury was most toxic to all three used cell lines (CHO-9 cells, CaCo, Hep-G2) followed by dimethylarsenic iodide. Tetramethyltin was the least toxic compound; however, the toxicity was also dependend upon the cell type. Human colon cells (CaCo) were most susceptible to the toxicity of the volatile compounds compared to the other cell lines. We conclude from our study that volatile metal(loid) compounds can be toxic to mammalian cells already at very low concentrations but the toxicity depends upon the metal(loid) species and the exposed cell type.