Table of Contents Author Guidelines Submit a Manuscript
Journal of Toxicology
Volume 2012 (2012), Article ID 941082, 10 pages
Review Article

Development of Screening Tools for the Interpretation of Chemical Biomonitoring Data

1Regulatory and Technical Affairs Department, American Chemistry Council, Washington, DC 20002, USA
2Summit Toxicology, LLP, Lyons, CO 80540, USA
3Central Product Safety, Procter & Gamble, Cincinnati, OH 45253, USA
4Summit Toxicology, LLP, Falls Church, VA 22044, USA

Received 26 August 2011; Accepted 5 December 2011

Academic Editor: Jane C. Caldwell

Copyright © 2012 Richard A. Becker et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Evaluation of a larger number of chemicals in commerce from the perspective of potential human health risk has become a focus of attention in North America and Europe. Screening-level chemical risk assessment evaluations consider both exposure and hazard. Exposures are increasingly being evaluated through biomonitoring studies in humans. Interpreting human biomonitoring results requires comparison to toxicity guidance values. However, conventional chemical-specific risk assessments result in identification of toxicity-based exposure guidance values such as tolerable daily intakes (TDIs) as applied doses that cannot directly be used to evaluate exposure information provided by biomonitoring data in a health risk context. This paper describes a variety of approaches for development of screening-level exposure guidance values with translation from an external dose to a biomarker concentration framework for interpreting biomonitoring data in a risk context. Applications of tools and concepts including biomonitoring equivalents (BEs), the threshold of toxicologic concern (TTC), and generic toxicokinetic and physiologically based toxicokinetic models are described. These approaches employ varying levels of existing chemical-specific data, chemical class-specific assessments, and generic modeling tools in response to varying levels of available data in order to allow assessment and prioritization of chemical exposures for refined assessment in a risk management context.