Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2010, Article ID 498980, 9 pages
http://dx.doi.org/10.1155/2010/498980
Review Article

Targeting Toll-Like Receptors for Treatment of SLE

1Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
2Arthritis and Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA

Received 10 December 2009; Accepted 24 August 2010

Academic Editor: Kathy Triantafilou

Copyright © 2010 Christopher G. Horton et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Akira, S. Uematsu, and O. Takeuchi, “Pathogen recognition and innate immunity,” Cell, vol. 124, no. 4, pp. 783–801, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Yamamoto, S. Sato, H. Hemmi et al., “Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway,” Science, vol. 301, no. 5633, pp. 640–643, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Kawai and S. Akira, “TLR signaling,” Seminars in Immunology, vol. 19, no. 1, pp. 24–32, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Hoebe, E. Janssen, and B. Beutler, “The interface between innate and adaptive immunity,” Nature Immunology, vol. 5, no. 10, pp. 971–974, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Akira, K. Takeda, and T. Kaisho, “Toll-like receptors: critical proteins linking innate and acquired immunity,” Nature Immunology, vol. 2, no. 8, pp. 675–680, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Park, S. Park, E. Yoo, D. Kim, and H. Shin, “Association of the polymorphism for Toll-like receptor 2 with type 1 diabetes susceptibility,” Annals of the New York Academy of Sciences, vol. 1037, pp. 170–174, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Devaraj, M. R. Dasu, J. Rockwood, W. Winter, S. C. Griffen, and I. Jialal, “Increased Toll-like receptor (TLR) 2 and TLR4 expression in monocytes from patients with type 1 diabetes: further evidence of a proinflammatory state,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 2, pp. 578–583, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. H. S. Kim, M. S. Han, K. W. Chung et al., “Toll-like receptor 2 senses β-cell death and contributes to the initiation of autoimmune diabetes,” Immunity, vol. 27, no. 2, pp. 321–333, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. M. K. Mohammad, M. Morran, B. Slotterbeck et al., “Dysregulated Toll-like receptor expression and signaling in bone marrow-derived macrophages at the onset of diabetes in the non-obese diabetic mouse,” International Immunology, vol. 18, no. 7, pp. 1101–1113, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. M. F. Roelofs, M. H. Wenink, F. Brentano et al., “Type I interferons might form the link between Toll-like receptor (TLR) 3/7 and TLR4-mediated synovial inflammation in rheumatoid arthritis (RA),” Annals of the Rheumatic Diseases, vol. 68, no. 9, pp. 1486–1493, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Maciejewska Rodrigues, A. Jüngel, R. E. Gay, and S. Gay, “Innate immunity, epigenetics and autoimmunity in rheumatoid arthritis,” Molecular Immunology, vol. 47, no. 1, pp. 12–18, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. H.-J. Anders, “A toll for lupus,” Lupus, vol. 14, no. 6, pp. 417–422, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. S. R. Christensen, M. Kashgarian, L. Alexopoulou, R. A. Flavell, S. Akira, and M. J. Shlomchik, “Toll-like receptor 9 controls anti-DNA autoantibody production in murine lupus,” Journal of Experimental Medicine, vol. 202, no. 2, pp. 321–331, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. S. R. Christensen, J. Shupe, K. Nickerson, M. Kashgarian, R. Flavell, and M. J. Shlomchik, “Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus,” Immunity, vol. 25, no. 3, pp. 417–428, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Lafyatis and A. Marshak-Rothstein, “Toll-like receptors and innate immune responses in systemic lupus erythematosus,” Arthritis Research and Therapy, vol. 9, no. 6, article 222, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Subramanian, K. Tus, Q.-Z. Li et al., “A Tlr7 translocation accelerates systemic autoimmunity in murine lupus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 26, pp. 9970–9975, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Pisitkun, J. A. Deane, M. J. Difilippantonio, T. Tarasenko, A. B. Satterthwaite, and S. Bolland, “Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication,” Science, vol. 312, no. 5780, pp. 1669–1672, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. R. D. Weeratna, S. R. Makinen, M. J. McCluskie, and H. L. Davis, “TLR agonists as vaccine adjuvants: comparison of CpG ODN and Resiquimod (R-848),” Vaccine, vol. 23, no. 45, pp. 5263–5270, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Lahiri, P. Das, and D. Chakravortty, “Engagement of TLR signaling as adjuvant: towards smarter vaccine and beyond,” Vaccine, vol. 26, no. 52, pp. 6777–6783, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Jarrossay, G. Napolitani, M. Colonna, F. Sallusto, and A. Lanzavecchia, “Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells,” European Journal of Immunology, vol. 31, no. 11, pp. 3388–3393, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Kadowaki, S. Ho, S. Antonenko et al., “Subsets of human dendritic cell precursors express different Toll-like receptors and respond to different microbial antigens,” Journal of Experimental Medicine, vol. 194, no. 6, pp. 863–869, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Dorner, S. Brandt, M. Tinguely et al., “Plasma cell Toll-like receptor (TLR) expression differs from that of B cells, and plasma cell TLR triggering enhances immunoglobulin production,” Immunology, vol. 128, no. 4, pp. 573–579, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Takeda, T. Kaisho, and S. Akira, “Toll-like receptors,” Annual Review of Immunology, vol. 21, pp. 335–376, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. L. A. J. O'Neill and A. G. Bowie, “The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling,” Nature Reviews Immunology, vol. 7, no. 5, pp. 353–364, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Muzio, G. Natoli, S. Saccani, M. Levrero, and A. Mantovani, “The human toll signaling pathway: divergence of nuclear factor κb and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6),” Journal of Experimental Medicine, vol. 187, no. 12, pp. 2097–2101, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Medzhitov, P. Preston-Hurlburt, E. Kopp et al., “MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways,” Molecular Cell, vol. 2, no. 2, pp. 253–258, 1998. View at Google Scholar · View at Scopus
  27. G. M. Barton and R. Medzhitov, “Toll-like receptor signaling pathways,” Science, vol. 300, no. 5625, pp. 1524–1525, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Kawai and S. Akira, “Toll-like receptor and RIG-1-like receptor signaling,” Annals of the New York Academy of Sciences, vol. 1143, pp. 1–20, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. C. J. Markin, L. F. Saltibus, and L. Spyracopoulos, “Dynamics of the RING domain from human TRAF6 by 15N NMR spectroscopy: implications for biological function,” Biochemistry, vol. 47, no. 38, pp. 10010–10017, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Kawai, S. Sato, K. J. Ishii et al., “Interferon-α induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6,” Nature Immunology, vol. 5, no. 10, pp. 1061–1068, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Silverman and T. Maniatis, “NF-κB signaling pathways in mammalian and insect innate immunity,” Genes and Development, vol. 15, no. 18, pp. 2321–2342, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Taniguchi, K. Ogasawara, A. Takaoka, and N. Tanaka, “IRF family of transcription factors as regulators of host defense,” Annual Review of Immunology, vol. 19, pp. 623–655, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Colonna, “TLR pathways and IFN-regulatory factors: to each its own,” European Journal of Immunology, vol. 37, no. 2, pp. 306–309, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Honda, H. Yanai, T. Mizutani et al., “Role of a transductional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 43, pp. 15416–15421, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Honda, H. Yanai, H. Negishi et al., “IRF-7 is the master regulator of type-I interferon-dependent immune responses,” Nature, vol. 434, no. 7034, pp. 772–777, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Yasuda, C. Richez, J. W. Maciaszek et al., “Murine dendritic cell type I IFN production induced by human IgG-RNA immune complexes is IFN regulatory factor (IRF)5 and IRF7 dependent and is required for IL-6 production,” Journal of Immunology, vol. 178, no. 11, pp. 6876–6885, 2007. View at Google Scholar · View at Scopus
  37. S. M. McWhirter, K. A. Fitzgerald, J. Rosains, D. C. Rowe, D. T. Golenbock, and T. Maniatis, “IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 1, pp. 233–238, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. T.-H. Chuang and R. J. Ulevitch, “Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors,” Nature Immunology, vol. 5, no. 5, pp. 495–502, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Burns, S. Janssens, B. Brissoni, N. Olivos, R. Beyaert, and J. Tschopp, “Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4,” Journal of Experimental Medicine, vol. 197, no. 2, pp. 263–268, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Janssens, K. Burns, E. Vercammen, J. Tschopp, and R. Beyaert, “MyD88S, a splice variant of MyD88, differentially modulates NF-κB- and AP-1-dependent gene expression,” FEBS Letters, vol. 548, no. 1–3, pp. 103–107, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. H. An, J. Hou, J. Zhou et al., “Phosphatase SHP-1 promotes TLR- and RIG-I-activated production of type I interferon by inhibiting the kinase IRAK1,” Nature Immunology, vol. 9, no. 5, pp. 542–550, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Kobayashi, L. D. Hernandez, J. E. Galán, C. A. Janeway Jr., R. Medzhitov, and R. A. Flavell, “IRAK-M is a negative regulator of Toll-like receptor signaling,” Cell, vol. 110, no. 2, pp. 191–202, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Rao, S. Nguyen, K. Ngo, and W.-P. Fung-Leung, “A novel splice variant of interleukin-1 receptor (IL-1R)-associated kinase 1 plays a negative regulatory role in Toll/IL-1R-induced inflammatory signaling,” Molecular and Cellular Biology, vol. 25, no. 15, pp. 6521–6532, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. D. L. Boone, E. E. Turer, E. G. Lee et al., “The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses,” Nature Immunology, vol. 5, no. 10, pp. 1052–1060, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Negishi, Y. Ohba, H. Yanai et al., “Negative regulation of Toll-like-receptor signaling by IRF-4,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 44, pp. 15989–15994, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. S. R. Christensen and M. J. Shlomchik, “Regulation of lupus-related autoantibody production and clinical disease by Toll-like receptors,” Seminars in Immunology, vol. 19, no. 1, pp. 11–23, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. E. Savarese, C. Steinberg, R. D. Pawar et al., “Requirement of Toll-like receptor 7 for pristane-induced production of autoantibodies and development of murine lupus nephritis,” Arthritis and Rheumatism, vol. 58, no. 4, pp. 1107–1115, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Blossom, E. B. Chu, W. O. Weigle, and K. M. Gilbert, “CD40 ligand expressed on B cells in the BXSB mouse model of systemic lupus erythematosus,” Journal of Immunology, vol. 159, no. 9, pp. 4580–4586, 1997. View at Google Scholar · View at Scopus
  49. R. Merino, L. Fossati, and S. Izui, “The lupus-prone BXSB strain: the Yaa gene model of systemic lupus erythematosus,” Springer Seminars in Immunopathology, vol. 14, no. 2, pp. 141–157, 1992. View at Google Scholar · View at Scopus
  50. S. Bolland, Y.-S. Yim, K. Tus, E. K. Wakeland, and J. V. Ravetch, “Genetic modifiers of systemic lupus erythematosus in FcγRIIB-/-mice,” Journal of Experimental Medicine, vol. 195, no. 9, pp. 1167–1174, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. D. H. Kono, M. K. Haraldsson, B. R. Lawson et al., “Endosomal TLR signaling is required for anti-nucleic acid and rheumatoid factor autoantibodies in lupus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 29, pp. 12061–12066, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Herrmann, R. E. Voll, O. M. Zoller, M. Hagenhofer, B. B. Ponner, and J. R. Kalden, “Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 41, no. 7, pp. 1241–1250, 1998. View at Publisher · View at Google Scholar · View at Scopus
  53. C. R. Steinman, “Circulating DNA in systemic lupus erythematosus. Isolation and characterization,” Journal of Clinical Investigation, vol. 73, no. 3, pp. 832–841, 1984. View at Google Scholar · View at Scopus
  54. Z. Amoura, J.-C. Piette, H. Chabre et al., “Circulating plasma levels of nucleosomes in patients with systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 40, no. 12, pp. 2217–2225, 1997. View at Publisher · View at Google Scholar · View at Scopus
  55. Z.-J. Pan, S. Maier, K. Schwarz et al., “Toll-like receptor 7 (TLR7) modulates anti-nucleosomal autoantibody isotype and renal complement deposition in mice exposed to syngeneic late apoptotic cells,” Annals of the Rheumatic Diseases, vol. 69, no. 6, pp. 1195–1199, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. X. Wu and S. L. Peng, “Toll-like receptor 9 signaling protects against murine lupus,” Arthritis and Rheumatism, vol. 54, no. 1, pp. 336–342, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Lartigue, P. Courville, I. Auquit et al., “Role of TLR9 in anti-nucleosome and anti-DNA antibody production in lpr mutation-induced marine lupus,” Journal of Immunology, vol. 177, no. 2, pp. 1349–1354, 2006. View at Google Scholar · View at Scopus
  58. P. Yu, U. Wellmann, S. Kunder et al., “Toll-like receptor 9-independent aggravation of glomerulonephritis in a novel model of SLE,” International Immunology, vol. 18, no. 8, pp. 1211–1219, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. P. S. Patole, H.-J. Gröne, S. Segerer et al., “Viral double-stranded RNA aggravates lupus nephritis through Toll-like receptor 3 on glomerular mesangial cells and antigen-presenting cells,” Journal of the American Society of Nephrology, vol. 16, no. 5, pp. 1326–1338, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. L. Bennett, A. K. Palucka, E. Arce et al., “Interferon and granulopoiesis signatures in systemic lupus erythematosus blood,” Journal of Experimental Medicine, vol. 197, no. 6, pp. 711–723, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. S. R. Ytterberg and T. J. Schnitzer, “Serum interferon levels in patients with systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 25, no. 4, pp. 401–406, 1982. View at Google Scholar · View at Scopus
  62. Y. Ioannou and D. A. Isenberg, “Current evidence for the induction of autoimmune rheumatic manifestations by cytokine therapy,” Arthritis and Rheumatism, vol. 43, no. 7, pp. 1431–1442, 2000. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Visentini, V. Conti, M. Cagliuso et al., “Regression of systemic lupus erythematosus after development of an acquired Toll-like receptor signaling defect and antibody deficiency,” Arthritis and Rheumatism, vol. 60, no. 9, pp. 2767–2771, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. P. L. De Jager, A. Richardson, T. J. Vyse, and J. D. Rioux, “Genetic variation in Toll-like receptor 9 and susceptibility to systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 54, no. 4, pp. 1279–1282, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. J.-W. Hur, H. D. Shin, B. L. Park, L. H. Kim, S.-Y. Kim, and S.-C. Bae, “Association study of Toll-like receptor 9 gene polymorphism in Korean patients with systemic lupus erythematosus,” Tissue Antigens, vol. 65, no. 3, pp. 266–270, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. F. Y. K. Demirci, S. Manzi, R. Ramsey-Goldman et al., “Association study of Toll-like Receptor 5 (TLR5) and Toll-like Receptor 9 (TLR9) polymorphisms in systemic lupus erythematosus,” Journal of Rheumatology, vol. 34, no. 8, pp. 1708–1711, 2007. View at Google Scholar · View at Scopus
  67. M. W. Ng, C. S. Lau, T. M. Chan, W. H. S. Wong, and Y. L. Lau, “Polymorphisms of the Toll-like receptor 9 (TLR9) gene with systemic lupus erythematosus in Chinese,” Rheumatology, vol. 44, no. 11, pp. 1456–1457, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. K. Migita, T. Miyashita, Y. Maeda et al., “Toll-like receptor expression in lupus peripheral blood mononuclear cells,” Journal of Rheumatology, vol. 34, no. 3, pp. 493–500, 2007. View at Google Scholar · View at Scopus
  69. S. Nakano, S. Morimoto, J. Suzuki et al., “Role of pathogenic auto-antibody production by Toll-like receptor 9 of B cells in active systemic lupus erythematosus,” Rheumatology, vol. 47, no. 2, pp. 145–149, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. E. D. Papadimitraki, C. Choulaki, E. Koutala et al., “Expansion of Toll-like receptor 9-expressing B cells in active systemic lupus erythematosus: implications for the induction and maintenance of the autoimmune process,” Arthritis and Rheumatism, vol. 54, no. 11, pp. 3601–3611, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. K. L. Moser, J. A. Kelly, C. J. Lessard, and J. B. Harley, “Recent insights into the genetic basis of systemic lupus erythematosus,” Genes and Immunity, vol. 10, no. 5, pp. 373–379, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. J. S. Bates, C. J. Lessard, J. M. Leon et al., “Meta-analysis and imputation identifies a 109kb risk haplotype spanning TNFAIP3 associated with lupus nephritis and hematologic manifestations,” Genes and Immunity, vol. 10, no. 5, pp. 470–477, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. R. R. Graham, C. Cotsapas, L. Davies et al., “Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus,” Nature Genetics, vol. 40, no. 9, pp. 1059–1061, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. S. L. Musone, K. E. Taylor, T. T. Lu et al., “Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus,” Nature Genetics, vol. 40, no. 9, pp. 1062–1064, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. A. Komatsuda, H. Wakui, K. Iwamoto et al., “Up-regulated expression of Toll-like receptors mRNAs in peripheral blood mononuclear cells from patients with systemic lupus erythematosus,” Clinical and Experimental Immunology, vol. 152, no. 3, pp. 482–487, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. A. Lartigue, N. Colliou, S. Calbo et al., “Critical role of TLR2 and TLR4 in autoantibody production and glomerulonephritis in lpr mutation-induced mouse lupus,” Journal of Immunology, vol. 183, no. 10, pp. 6207–6216, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. F. J. Barrat, T. Meeker, J. Gregorio et al., “Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus,” Journal of Experimental Medicine, vol. 202, no. 8, pp. 1131–1139, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. O. Duramad, K. L. Fearon, B. Chang et al., “Inhibitors of TLR-9 act on multiple cell subsets in mouse and man in vitro and prevent death in vivo from systemic inflammation,” Journal of Immunology, vol. 174, no. 9, pp. 5193–5200, 2005. View at Google Scholar · View at Scopus
  79. S. J. Rozzo, J. D. Allard, D. Choubey et al., “Evidence for an interferon-inducible gene, Ifi202, in the susceptibility to systemic lupus,” Immunity, vol. 15, no. 3, pp. 435–443, 2001. View at Publisher · View at Google Scholar · View at Scopus
  80. M.-L. Santiago-Raber, R. Baccala, K. M. Haraldsson et al., “Type-I interferon receptor deficiency reduces lupus-like disease in NZB mice,” Journal of Experimental Medicine, vol. 197, no. 6, pp. 777–788, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. M. K. Crow, “Type I interferon in systemic lupus erythematosus,” Current Topics in Microbiology and Immunology, vol. 316, pp. 359–386, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. F. J. Barrat, T. Meeker, J. H. Chan, C. Guiducci, and R. L. Coffmann, “Treatment of lupus-prone mice with a dual inhibitor of TLR7 and TLR9 leads to reduction of autoantibody production and amelioration of disease symptoms,” European Journal of Immunology, vol. 37, no. 12, pp. 3582–3586, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. L. Dong, S. Ito, K. J. Ishii, and D. M. Klinman, “Suppressive oligodeoxynucleotides delay the onset of glomerulonephritis and prolong survival in lupus-prone NZB x NZW mice,” Arthritis and Rheumatism, vol. 52, no. 2, pp. 651–658, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. R. D. Pawar, A. Ramanjaneyulu, O. P. Kulkarni, M. Lech, S. Segerer, and H.-J. Anders, “Inhibition of Toll-like receptor-7 (TLR-7) or TLR-7 plus TLR-9 attenuates glomerulonephritis and lung injury in experimental lupus,” Journal of the American Society of Nephrology, vol. 18, no. 6, pp. 1721–1731, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. K. Oda and H. Kitano, “A comprehensive map of the Toll-like receptor signaling network,” Molecular Systems Biology, vol. 2, Article ID 2006.0015, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. T. Bartfai, M. M. Behrens, S. Gaidarova, J. Pemberton, A. Shivanyuk, and J. Rebek Jr., “A low molecular weight mimic of the Toll/IL-1 receptor/resistance domain inhibits IL-1 receptor-mediated responses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 13, pp. 7971–7976, 2003. View at Publisher · View at Google Scholar · View at Scopus
  87. M. Loiarro, C. Sette, G. Gallo et al., “Peptide-mediated interference of TIR domain dimerization in MyD88 inhibits interleukin-1-dependent activation of NF-κB,” Journal of Biological Chemistry, vol. 280, no. 16, pp. 15809–15814, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Loiarro, F. Capolunghi, N. Fantò et al., “Pivotal Advance: inhibition of MyD88 dimerization and recruitment of IRAK1 and IRAK4 by a novel peptidomimetic compound,” Journal of Leukocyte Biology, vol. 82, no. 4, pp. 801–810, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. N. Suzuki, S. Suzuki, G. S. Duncan et al., “Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4,” Nature, vol. 416, no. 6882, pp. 750–754, 2002. View at Publisher · View at Google Scholar · View at Scopus
  90. W. K. Tae, K. Staschke, K. Bulek et al., “A critical role for IRAK4 kinase activity in Toll-like receptor-mediated innate immunity,” Journal of Experimental Medicine, vol. 204, no. 5, pp. 1025–1036, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. G. M. Buckley, R. Fosbeary, J. L. Fraser et al., “IRAK-4 inhibitors. Part III: a series of imidazo[1,2-a]pyridines,” Bioorganic and Medicinal Chemistry Letters, vol. 18, no. 12, pp. 3656–3660, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. Z. Wang, J. Liu, A. Sudom et al., “Crystal structures of IRAK-4 kinase in complex with inhibitors: a serine/threonine kinase with tyrosine as a gatekeeper,” Structure, vol. 14, no. 12, pp. 1835–1844, 2006. View at Publisher · View at Google Scholar · View at Scopus
  93. J. P. Powers, S. Li, J. C. Jaen et al., “Discovery and initial SAR of inhibitors of interleukin-1 receptor-associated kinase-4,” Bioorganic and Medicinal Chemistry Letters, vol. 16, no. 11, pp. 2842–2845, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. P. Cohen, “Targeting protein kinases for the development of anti-inflammatory drugs,” Current Opinion in Cell Biology, vol. 21, no. 2, pp. 317–324, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. L. Rönnblom and V. Pascual, “The innate immune system in SLE: type I interferons and dendritic cells,” Lupus, vol. 17, no. 5, pp. 394–399, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. C. Guiducci, R. L. Coffman, and F. J. Barrat, “Signalling pathways leading to IFN-α production in human plasmacytoid dendritic cell and the possible use of agonists or antagonists of TLR7 and TLR9 in clinical indications,” Journal of Internal Medicine, vol. 265, no. 1, pp. 43–57, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. Q. Xie, L. Gan, J. Wang, I. Wilson, and L. Li, “Loss of the innate immunity negative regulator IRAK-M leads to enhanced host immune defense against tumor growth,” Molecular Immunology, vol. 44, no. 14, pp. 3453–3461, 2007. View at Publisher · View at Google Scholar · View at Scopus