Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2010, Article ID 536478, 9 pages
http://dx.doi.org/10.1155/2010/536478
Review Article

Modulation of Toll-Like Receptor Activity by Leukocyte Ig-Like Receptors and Their Effects during Bacterial Infection

1Centre for Infection, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
2Veterinary Laboratories Agency, Weybridge, New Haw, KT15 3NB, UK

Received 23 February 2010; Accepted 30 March 2010

Academic Editor: Philipp Lepper

Copyright © 2010 Louise E. Pilsbury et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. A. Janeway Jr., “Approaching the asymptote? Evolution and revolution in immunology,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 54, no. 1, pp. 1–13, 1989. View at Google Scholar · View at Scopus
  2. K. Takeda, T. Kaisho, and S. Akira, “Toll-like receptors,” Annual Review of Immunology, vol. 21, pp. 335–376, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. S. Akira, K. Takeda, and T. Kaisho, “Toll-like receptors: critical proteins linking innate and acquired immunity,” Nature Immunology, vol. 2, no. 8, pp. 675–680, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. S. Thoma-Uszynski, S. Stenger, O. Takeuchi et al., “Induction of direct antimicrobial activity through mammalian toll-like receptors,” Science, vol. 291, no. 5508, pp. 1544–1547, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. M. Muzio, N. Polentarutti, D. Bosisio, M. K. P. Prahladan, and A. Mantovani, “Toll-like receptors: a growing family of immune receptors that are differentially expressed and regulated by different leukocytes,” Journal of Leukocyte Biology, vol. 67, no. 4, pp. 450–456, 2000. View at Google Scholar · View at Scopus
  6. X. S. Ju, C. Hacker, B. Scherer et al., “Immunoglobulin-like transcripts ILT2, ILT3 and ILT7 are expressed by human dendritic cells and down-regulated following activation,” Gene, vol. 331, no. 1-2, pp. 159–164, 2004. View at Publisher · View at Google Scholar · View at PubMed
  7. L. Borges and D. Cosman, “LIRs/ILTs/MIRs, inhibitory and stimulatory Ig-superfamily receptors expressed in myeloid and lymphoid cells,” Cytokine and Growth Factor Reviews, vol. 11, no. 3, pp. 209–217, 2000. View at Publisher · View at Google Scholar
  8. A. C. I. Boullart, E. H. J. G. Aarntzen, P. Verdijk et al., “Maturation of monocyte-derived dendritic cells with Toll-like receptor 3 and 7/8 ligands combined with prostaglandin E results in high interleukin-12 production and cell migration,” Cancer Immunology, Immunotherapy, vol. 57, no. 11, pp. 1589–1597, 2008. View at Publisher · View at Google Scholar · View at PubMed
  9. A. Visintin, A. Mazzoni, J. H. Spitzer, D. H. Wyllie, S. K. Dower, and D. M. Segal, “Regulation of Toll-like receptors in human monocytes and dendritic cells,” Journal of Immunology, vol. 166, no. 1, pp. 249–255, 2001. View at Google Scholar
  10. V. Hornung, S. Rothenfusser, S. Britsch et al., “Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides,” Journal of Immunology, vol. 168, no. 9, pp. 4531–4537, 2002. View at Google Scholar
  11. D. Belkin, M. Torkar, C. Chang et al., “Killer cell Ig-like receptor and leukocyte Ig-like receptor transgenic mice exhibit tissue- and cell-specific transgene expression,” Journal of Immunology, vol. 171, no. 6, pp. 3056–3063, 2003. View at Google Scholar
  12. M. Cho, K. Ishida, J. Chen et al., “SAGE library screening reveals ILT7 as a specific plasmacytoid dendritic cell marker that regulates type I IFN production,” International Immunology, vol. 20, no. 1, pp. 155–164, 2008. View at Publisher · View at Google Scholar · View at PubMed
  13. L. Borges, M. Kubin, and T. Kuhlman, “LIR9, an immunoglobulin-superfamily-activating receptor, is expressed as a transmembrane and as a secreted molecule,” Blood, vol. 101, no. 4, pp. 1484–1486, 2003. View at Publisher · View at Google Scholar · View at PubMed
  14. D. C. Jones, A. Roghanian, D. P. Brown et al., “Alternative mRNA splicing creates transcripts encoding soluble proteins from most LILR genes,” European Journal of Immunology, vol. 39, no. 11, pp. 3195–3206, 2009. View at Publisher · View at Google Scholar · View at PubMed
  15. K. A. Zarember and P. J. Godowski, “Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines,” Journal of Immunology, vol. 168, no. 2, pp. 554–561, 2002. View at Google Scholar
  16. A. G. Jegalian, F. Facchetti, and E. S. Jaffe, “Plasmacytoid dendritic cells physiologic roles and pathologic states,” Advances in Anatomic Pathology, vol. 16, no. 6, pp. 392–404, 2009. View at Publisher · View at Google Scholar · View at PubMed
  17. M. J. Brunda, “Interleukin-12,” Journal of Leukocyte Biology, vol. 55, no. 2, pp. 280–288, 1994. View at Google Scholar
  18. D. M. Mosser, “The many faces of macrophage activation,” Journal of Leukocyte Biology, vol. 73, no. 2, pp. 209–212, 2003. View at Publisher · View at Google Scholar
  19. K. S. Michelsen, A. Aicher, M. Mohaupt et al., “The role of toll-like receptors (TLRs) in bacteria-induced maturation of murine dendritic cells (DCs): peptidoglycan and lipoteichoic acid are inducers of DC maturation and require TLR2,” Journal of Biological Chemistry, vol. 276, no. 28, pp. 25680–25686, 2001. View at Publisher · View at Google Scholar · View at PubMed
  20. F. Re and J. L. Strominger, “Toll-like receptor 2 (TLR2) and TLR4 differentially activate human dendritic cells,” Journal of Biological Chemistry, vol. 276, no. 40, pp. 37692–37699, 2001. View at Publisher · View at Google Scholar · View at PubMed
  21. L. Chen, “Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity,” Nature Reviews Immunology, vol. 4, no. 5, pp. 336–347, 2004. View at Google Scholar
  22. M. U. Martin and H. Wesche, “Summary and comparison of the signaling mechanisms of the Toll/interleukin-1 receptor family,” Biochimica et Biophysica Acta, vol. 1592, no. 3, pp. 265–280, 2002. View at Publisher · View at Google Scholar
  23. T. Horng, G. M. Barton, R. A. Flavell, and R. Medzhitov, “The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors,” Nature, vol. 420, no. 6913, pp. 329–333, 2002. View at Publisher · View at Google Scholar · View at PubMed
  24. K. Dabbagh and D. B. Lewis, “Toll-like receptors and T-helper-1/T-helper-2 responses,” Current Opinion in Infectious Diseases, vol. 16, no. 3, pp. 199–204, 2003. View at Google Scholar
  25. G. C. Sen and S. N. Sarkar, “Transcriptional signaling by double-stranded RNA: role of TLR3,” Cytokine and Growth Factor Reviews, vol. 16, no. 1, pp. 1–14, 2005. View at Publisher · View at Google Scholar · View at PubMed
  26. E. Meylan and J. Tschopp, “IRAK2 takes its place in TLR signaling,” Nature Immunology, vol. 9, no. 6, pp. 581–582, 2008. View at Publisher · View at Google Scholar · View at PubMed
  27. B. Malissen and J. J. Ewbank, “‘TaiLoRing’ the response of dendritic cells to pathogens,” Nature Immunology, vol. 6, no. 8, pp. 749–750, 2005. View at Publisher · View at Google Scholar · View at PubMed
  28. V. Ubaldi, L. Gatta, L. Pace, G. Doria, and C. Pioli, “CTLA-4 engagement inhibits Th2 but not Th1 cell polarisation,” Clinical and Developmental Immunology, vol. 10, no. 1, pp. 13–17, 2003. View at Publisher · View at Google Scholar
  29. S. D. Reid, G. Penna, and L. Adorini, “The control of T cell responses by dendritic cell subsets,” Current Opinion in Immunology, vol. 12, no. 1, pp. 114–121, 2000. View at Publisher · View at Google Scholar
  30. K. Ozato, H. Tsujimura, and T. Tamura, “Toll-like receptor signaling and regulation of cytokine gene expression in the immune system,” BioTechniques, vol. 33, no. 4, pp. S66–S75, 2002. View at Google Scholar
  31. M. H. Wenink, K. C. Santegoets, J. C. Broen et al., “TLR2 promotes Th2/Th17 responses via TLR4 and TLR7/8 by abrogating the type I IFN amplification loop,” Journal of Immunology, vol. 183, no. 11, pp. 6960–6970, 2009. View at Google Scholar
  32. D. M. Underhill, “Collaboration between the innate immune receptors dectin-1, TLRs, and Nods,” Immunological Reviews, vol. 219, no. 1, pp. 75–87, 2007. View at Publisher · View at Google Scholar · View at PubMed
  33. S. C. Eisenbarth, D. A. Piggott, J. W. Huleatt, I. Visintin, C. A. Herrick, and K. Bottomly, “Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen,” Journal of Experimental Medicine, vol. 196, no. 12, pp. 1645–1651, 2002. View at Publisher · View at Google Scholar
  34. E. van Riet, B. Everts, K. Retra et al., “Combined TLR2 and TLR4 ligation in the context of bacterial or helminth extracts in human monocyte derived dendritic cells: molecular correlates for Th1/Th2 polarization,” BMC Immunology, vol. 10, article 9, 2009. View at Publisher · View at Google Scholar · View at PubMed
  35. L. A. J. O'Neill, “‘Fine tuning’ TLR signaling,” Nature Immunology, vol. 9, no. 5, pp. 459–461, 2008. View at Publisher · View at Google Scholar · View at PubMed
  36. T. Lang and A. Mansell, “The negative regulation of Toll-like receptor and associated pathways,” Immunology and Cell Biology, vol. 85, no. 6, pp. 425–434, 2007. View at Publisher · View at Google Scholar · View at PubMed
  37. J. M. Cavaillon and M. Adib-Conquy, “Bench-to-bedside review: endotoxin tolerance as a model of leukocyte reprogramming in sepsis,” Critical Care, vol. 10, no. 5, article 233, 2006. View at Publisher · View at Google Scholar · View at PubMed
  38. S. M. Dauphinee and A. Karsan, “Lipopolysaccharide signaling in endothelial cells,” Laboratory Investigation, vol. 86, no. 1, pp. 9–22, 2006. View at Publisher · View at Google Scholar · View at PubMed
  39. H. Yi, X. Yu, P. Gao et al., “Pattern recognition scavenger receptor SRA/CD204 down-regulates Toll-like receptor 4 signaling-dependent CD8 T-cell activation,” Blood, vol. 113, no. 23, pp. 5819–5828, 2009. View at Publisher · View at Google Scholar · View at PubMed
  40. K. Bulek, S. Swaidani, J. Qin et al., “The essential role of single Ig IL-1 receptor-related molecule/Toll IL-1R8 in regulation of Th2 immune response,” Journal of Immunology, vol. 182, no. 5, pp. 2601–2609, 2009. View at Publisher · View at Google Scholar · View at PubMed
  41. J. Samaridis and M. Colonna, “Cloning of novel immunoglobulin superfamily receptors expressed on human myeloid and lymphoid cells: structural evidence for new stimulatory and inhibitory pathways,” European Journal of Immunology, vol. 27, no. 3, pp. 660–665, 1997. View at Publisher · View at Google Scholar · View at PubMed
  42. M. Cella, C. Döhring, J. Samaridis et al., “A novel inhibitory receptor (ILT3) expressed on monocytes, macrophages, and dendritic cells involved in antigen processing,” Journal of Experimental Medicine, vol. 185, no. 10, pp. 1743–1752, 1997. View at Publisher · View at Google Scholar
  43. D. Cosman, N. Fanger, L. Borges et al., “A novel immunoglobulin superfamily receptor for cellular and viral MHC class I molecules,” Immunity, vol. 7, no. 2, pp. 273–282, 1997. View at Publisher · View at Google Scholar
  44. K. J. Anderson and R. L. Allen, “Regulation of T-cell immunity by leucocyte immunoglobulin-like receptors: innate immune receptors for self on antigen-presenting cells,” Immunology, vol. 127, no. 1, pp. 8–17, 2009. View at Publisher · View at Google Scholar · View at PubMed
  45. H. Nakajima, J. Samaridis, L. Angman, and M. Colonna, “Cutting edge: human myeloid cells express an activating ILT receptor (ILT1) that associates with Fc receptor γ-chain,” Journal of Immunology, vol. 162, no. 1, pp. 5–8, 1999. View at Google Scholar
  46. A. David and J. Trowsdale, “You say ITAM and I say ITIM, let's call the whole thing off: the ambiguity of immunoreceptor signalling,” European Journal of Immunology, vol. 36, no. 7, pp. 1646–1653, 2006. View at Publisher · View at Google Scholar · View at PubMed
  47. K. Hayami, D. Fukuta, Y. Nishikawa et al., “Molecular cloning of a novel murine cell-surface glycoprotein homologous to killer cell inhibitory receptors,” Journal of Biological Chemistry, vol. 272, no. 11, pp. 7320–7327, 1997. View at Publisher · View at Google Scholar
  48. B. C. Viertlboeck, F. A. Habermann, R. Schmitt, M. A. M. Groenen, L. D. Pasquier, and T. W. Göbel, “The chicken leukocyte receptor complex: a highly diverse multigene family encoding at least six structurally distinct receptor types,” Journal of Immunology, vol. 175, no. 1, pp. 385–393, 2005. View at Google Scholar
  49. C. G. Elsik, R. L. Tellam, K. C. Worley et al., “The genome sequence of taurine cattle: a window to ruminant biology and evolution,” Science, vol. 324, no. 5926, pp. 522–528, 2009. View at Publisher · View at Google Scholar · View at PubMed
  50. H. Kubagawa, P. D. Burrows, and M. D. Cooper, “A novel pair of immunoglobulin-like receptors expressed by B cells and myeloid cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 10, pp. 5261–5266, 1997. View at Publisher · View at Google Scholar
  51. T. Takai and M. Ono, “Activating and inhibitory nature of the murine paired immunoglobulin-like receptor family,” Immunological Reviews, vol. 181, pp. 215–222, 2001. View at Publisher · View at Google Scholar
  52. T. Tun, Y. Kubagawa, G. Dennis, P. D. Burrows, M. D. Cooper, and H. Kubagawa, “Genomic structure of mouse PIR-A6, an activating member of the paired immunoglobulin-like receptor gene family,” Tissue Antigens, vol. 61, no. 3, pp. 220–230, 2003. View at Publisher · View at Google Scholar
  53. T. Takai, “Paired immunoglobulin-like receptors and their MHC class I recognition,” Immunology, vol. 115, no. 4, pp. 433–440, 2005. View at Publisher · View at Google Scholar · View at PubMed
  54. Y. Yamashita, M. Ono, and T. Takai, “Inhibitory and stimulatory functions of paired Ig-like receptor (PIR) family in RBL-2H3 cells,” Journal of Immunology, vol. 161, no. 8, pp. 4042–4047, 1998. View at Google Scholar
  55. Y. Yamashita, D. Fukuta, A. Tsuji et al., “Genomic structures and chromosomal location of p91, a novel murine regulatory receptor family,” Journal of Biochemistry, vol. 123, no. 2, pp. 358–368, 1998. View at Google Scholar
  56. S. Kasai, M. Inui, K. Nakamura et al., “A novel regulatory role of gp49B on dendritic cells in T-cell priming,” European Journal of Immunology, vol. 38, no. 9, pp. 2426–2437, 2008. View at Publisher · View at Google Scholar · View at PubMed
  57. M. Cella, D. Jarrossay, F. Faccheth et al., “Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon,” Nature Medicine, vol. 5, no. 8, pp. 919–923, 1999. View at Publisher · View at Google Scholar · View at PubMed
  58. A. Verbrugge, T. De Ruiter, C. Geest, P. J. Coffer, and L. Meyaard, “Differential expression of leukocyte-associated Ig-like receptor-1 during neutrophil differentiation and activation,” Journal of Leukocyte Biology, vol. 79, no. 4, pp. 828–836, 2006. View at Publisher · View at Google Scholar · View at PubMed
  59. M. B. Feinberg and G. Silvestri, “T cells and immune tolerance induction: a regulatory renaissance?” Nature Immunology, vol. 3, no. 3, pp. 215–217, 2002. View at Publisher · View at Google Scholar · View at PubMed
  60. D. J. Lee, P. A. Sieling, M. T. Ochoa et al., “LILRA2 activation inhibits dendritic cell differentiation and antigen presentation to T cells,” Journal of Immunology, vol. 179, no. 12, pp. 8128–8136, 2007. View at Google Scholar
  61. D. P. Brown, D. C. Jones, K. J. Anderson et al., “The inhibitory receptor LILRB4 (ILT3) modulates antigen presenting cell phenotype and, along with LILRB2 (ILT4), is upregulated in response to Salmonella infection,” BMC Immunology, vol. 10, article 56, 2009. View at Publisher · View at Google Scholar · View at PubMed
  62. H. K. Lu, C. Rentero, M. J. Raftery, L. Borges, K. Bryant, and N. Tedla, “Leukocyte Ig-like receptor B4 (LILRB4) is a potent inhibitor of FcγRI-mediated monocyte activation via dephosphorylation of multiple kinases,” Journal of Biological Chemistry, vol. 284, no. 50, pp. 34839–34848, 2009. View at Publisher · View at Google Scholar · View at PubMed
  63. G. Vlad, C.-C. Chang, A. I. Colovai, P. Berloco, R. Cortesini, and N. Suciu-Foca, “Immunoglobulin-like transcript 3: a crucial regulator of dendritic cell function,” Human Immunology, vol. 70, no. 5, pp. 340–344, 2009. View at Publisher · View at Google Scholar · View at PubMed
  64. M. Nakayama, D. M. Underhill, T. W. Petersen et al., “Paired Ig-like receptors bind to bacteria and shape TLR-mediated cytokine production,” Journal of Immunology, vol. 178, no. 7, pp. 4250–4259, 2007. View at Google Scholar
  65. P. Parham, “Immunogenetics of killer-cell immunoglobulin-like receptors,” Tissue Antigens, vol. 62, no. 3, pp. 194–200, 2003. View at Publisher · View at Google Scholar
  66. C. S. C. Chui and D. Li, “Role of immunolglobulin-like transcript family receptors and their ligands in suppressor T-cell-induced dendritic cell tolerization,” Human Immunology, vol. 70, no. 9, pp. 686–691, 2009. View at Publisher · View at Google Scholar · View at PubMed
  67. J. Wang, Y. Li, Y. Kinjo et al., “Lipid binding orientation within CD1d affects recognition of Borrelia burgorferi antigens by NKT cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 4, pp. 1535–1540, 2010. View at Publisher · View at Google Scholar · View at PubMed
  68. K. Hirayasu, J. Ohashi, H. Tanaka et al., “Evidence for natural selection on leukocyte immunoglobulin-like receptors for HLA class I in Northeast Asians,” American Journal of Human Genetics, vol. 82, no. 5, pp. 1075–1083, 2008. View at Publisher · View at Google Scholar · View at PubMed
  69. O. A. Huynh, T. Hampartzoumian, J. P. Arm et al., “Down-regulation of leucocyte immunoglobulin-like receptor expression in the synovium of rheumatoid arthritis patients after treatment with disease-modifying anti-rheumatic drugs,” Rheumatology, vol. 46, no. 5, pp. 742–751, 2007. View at Publisher · View at Google Scholar · View at PubMed
  70. D. Brown, J. Trowsdale, and R. Allen, “The LILR family: modulators of innate and adaptive immune pathways in health and disease,” Tissue Antigens, vol. 64, no. 3, pp. 215–225, 2004. View at Publisher · View at Google Scholar · View at PubMed
  71. A. Ujike, K. Takeda, A. Nakamura, S. Ebihara, K. Akiyama, and T. Takai, “Impaired dendritic cell maturation and increased TH2 responses in PIR-B/ mice,” Nature Immunology, vol. 3, no. 6, pp. 542–548, 2002. View at Publisher · View at Google Scholar · View at PubMed
  72. I. Torii, S. Oka, M. Hotomi et al., “PIR-B-deficient mice are susceptible to Salmonella infection,” Journal of Immunology, vol. 181, no. 6, pp. 4229–4239, 2008. View at Google Scholar
  73. J. R. Bleharski, H. Li, C. Meinken et al., “Use of genetic profiling in leprosy to discriminate clinical forms of the disease,” Science, vol. 301, no. 5639, pp. 1527–1530, 2003. View at Publisher · View at Google Scholar · View at PubMed
  74. N. Cohen, J. Morisset, and D. Emilie, “Induction of tolerance by Porphyromonas gingivalis on APCs: a mechanism implicated in periodontal infection,” Journal of Dental Research, vol. 83, no. 5, pp. 429–433, 2004. View at Google Scholar
  75. T. Nishiya and A. L. DeFranco, “Ligand-regulated chimeric receptor approach reveals distinctive subcellular localization and signaling properties of the Toll-like receptors,” Journal of Biological Chemistry, vol. 279, no. 18, pp. 19008–19017, 2004. View at Publisher · View at Google Scholar · View at PubMed
  76. W. Cao, D. B. Rosen, T. Ito et al., “Plasmacytoid dendritic cell-specific receptor ILT7-FcεRIγ inhibits Toll-like receptor-induced interferon production,” Journal of Experimental Medicine, vol. 203, no. 6, pp. 1399–1405, 2006. View at Publisher · View at Google Scholar · View at PubMed
  77. W. Cao, L. Bover, M. Cho et al., “Regulation of TLR7/9 responses in plasmacytoid dendritic cells by BST2 and ILT7 receptor interaction,” Journal of Experimental Medicine, vol. 206, no. 7, pp. 1603–1614, 2009. View at Publisher · View at Google Scholar · View at PubMed
  78. T. Kubo, Y. Uchida, Y. Watanabe et al., “Augmented TLR9-induced Btk activation in PIR-B-deficient B-1 cells provokes excessive autoantibody production and autoimmunity,” Journal of Experimental Medicine, vol. 206, no. 9, pp. 1971–1982, 2009. View at Publisher · View at Google Scholar · View at PubMed
  79. M. Shiroishi, K. Tsumoto, K. Amano et al., “Human inhibitory receptors Ig-like transcript 2 (ILT2) and ILT4 compete with CD8 for MHC class I binding and bind preferentially to HLA-G,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 15, pp. 8856–8861, 2003. View at Publisher · View at Google Scholar · View at PubMed
  80. J. LeMaoult, K. Zafaranloo, C. Le Banff, and E. D. Carosella, “HLA-G up-regulates ILT2, ILT3, ILT4, and KIR2DL4 in antigen presenting cells, NK cells, and T cells,” FASEB Journal, vol. 19, no. 6, pp. 662–664, 2005. View at Publisher · View at Google Scholar · View at PubMed
  81. R. Apps, L. Gardner, A. M. Sharkey, N. Holmes, and A. Moffett, “A homodimeric complex of HLA-G on normal trophoblast cells modulates antigen-presenting cells via LILRB1,” European Journal of Immunology, vol. 37, no. 7, pp. 1924–1937, 2007. View at Publisher · View at Google Scholar · View at PubMed
  82. A. E. Pedersen, M. Gad, M. R. Walter, and M. H. Claesson, “Induction of regulatory dendritic cells by dexamethasone and 1α,25-dihydroxyvitamin D,” Immunology Letters, vol. 91, no. 1, pp. 63–69, 2004. View at Publisher · View at Google Scholar
  83. U. Švajger, A. Vidmar, and M. Jeras, “Niflumic acid renders dendritic cells tolerogenic and up-regulates inhibitory molecules ILT3 and ILT4,” International Immunopharmacology, vol. 8, no. 7, pp. 997–1005, 2008. View at Publisher · View at Google Scholar · View at PubMed
  84. L. Adorini, N. Giarratana, and G. Penna, “Pharmacological induction of tolerogenic dendritic cells and regulatory T cells,” Seminars in Immunology, vol. 16, no. 2, pp. 127–134, 2004. View at Publisher · View at Google Scholar · View at PubMed
  85. M. Brenk, M. Scheler, S. Koch et al., “Tryptophan deprivation induces inhibitory receptors ILT3 and ILT4 on dendritic cells favoring the induction of human CD4+CD25+Foxp3+ T regulatory cells,” Journal of Immunology, vol. 183, no. 1, pp. 145–154, 2009. View at Publisher · View at Google Scholar · View at PubMed
  86. E. Morel and T. Bellón, “Amoxicillin conjugates to HLA class I molecules and interferes with signalling through the ILT2/LIR-1/CD85j inhibitory receptor,” Allergy, vol. 62, no. 2, pp. 190–196, 2007. View at Publisher · View at Google Scholar · View at PubMed